精英家教网 > 高中数学 > 题目详情
已知f(x)=x3+bx+cx+d在(﹣∞,0)上是增函数,在[0,2]上是减函数,且方程f(x)=0有三个根,它们分别为α,2,β.
(1)求c的值;
(2)求证f(1)≥2;
(3)求|α﹣β|的取值范围.
解:(1)∵f(x)在(﹣∞,0]上是增函数,在(0,2]上是减函数;
∴x=0是f'(x)=0的根,
又∵f'(x)=3x2+2bx+c,
∴f'(0)=0,∴c=0.
(2)∵f(x)=0的根为α,2,β,
∴f(2)=0,∴8+4b+d=0,
又∵f'(2)≤0,
∴12+4b≤0,∴b≤﹣3,
又d=﹣8﹣4b ∴d≥4 f(1)=1+b+d,f(2)=0
∴d=﹣8﹣4b且b≤﹣3,
∴f(1)=1+b﹣8﹣4b=﹣7﹣3b≥2
(3)∵f(x)=0有三根α,2,β;
∴f(x)=(x﹣α)(x﹣2)(x﹣β) =x3﹣(α+β+2)·x2﹣2αβ
 ;
∴|β﹣α|2=(α+β)2﹣4αβ =(b+2)2+2d =b2+4b+4﹣16﹣8b
=b2﹣4b﹣12 =(b﹣2)2﹣16
又∵b≤﹣3,∴|β﹣α|≥3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函数f(x)的单调递减区间为(
13
,1),求函数f(x)的解析式;
(2)若f(x)的导函数为f′(x),对任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲线y=f(x)在x=-1处的切线与直线2x-y-1=0平行,求a的值;
(2)当a=-2时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+x-2在点P处的切线与直线y=4x-1平行,则切点P的坐标是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,则f(2013)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+3x2+a(a为常数) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步练习册答案