精英家教网 > 高中数学 > 题目详情
已知{an}是等差数列,Sn为其前n项和,若S21=S4000,O为坐标原点,点P(1,a1),点Q(2011,a2011),则
OP
OQ
的值为(  )
分析:根据向量数量积的坐标表示,
OP
OQ
=2011+a2011a1,求得a2011,a1=即得结果.由S21=S4000,即a22+a23+…+a4000=0,再利用等差数列求和公式及等差数列性质得出a2011=0,所以结果为2011.
解答:解:{an}是等差数列,Sn为其前n项和,若S21=S4000
∴a22+a23+…+a4000=0,即
1
2
(a22+a4000)×3979=0,
∴a22+a4000=0,即2a2011=0.
∵点P(1,a1),点Q(2011,a2011),
OP
OQ
=(1,a1)•(2011,a2011)=2011+a2011a1=2011.
故选A.
点评:本题考查等差数列求和公式,等差数列的性质,向量数量积的坐标表示.合理利用数列的性质求解,能减少计算量,也能体现题目的立意.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是等差数{an}的前n项和,已知S6=36,Sn=324,若Sn-6=144(n>6),则n等于

A.15                 B.16             C.17                D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),数列{an}
满足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年重庆市南开中学高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知满足:
(I)求证:数列{a2k-1}是等差数;数列{a2k}是等比数列;(其中k∈N*);
(II)记an=f(n),对任意的正整数n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范围.

查看答案和解析>>

同步练习册答案