精英家教网 > 高中数学 > 题目详情
已知0<α<
π
2
<β<π,又sinα=
3
5
,cos(α+β)=-
4
5
,则sinβ=(  )
A.0B.0或
24
25
C.
24
25
D.±
24
25
∵0<α<
π
2
<β<π,
π
2
<α+β<
2

又sinα=
3
5
,cos(α+β)=-
4
5
<0,
∴cosα=
1-sin2α
=
4
5
,sin(α+β)=±
1-cos2(α+β)
3
5

当sin(α+β)=-
3
5
时,sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα=-
3
5
×
4
5
+
4
5
×
3
5
=0,不合题意,舍去;
当sin(α+β)=
3
5
时,sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα=
3
5
×
4
5
+
4
5
×
3
5
=
24
25

故选C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知0<β<α<
π
2
,且cosα=
3
5
cos(α-β)=
12
13
,则cosβ=
56
65
56
65

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(c+1)x+c(c∈R).
(1)解关于x的不等式f(x)<0;
(2)当c=-2时,不等式f(x)>ax-5在(0,2)上恒成立,求实数a的取值范围;
(3)设g(x)=f(x)-ax,已知0<g(2)<1,3<g(3)<5,求g(4)的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
+2
6
sinxcosx-2
2
sin2x,(x∈R)

(I)对f(x)的图象作如下变换:先将f(x)的图象向右平移
π
12
个单位,再将横坐标伸长到原来的2倍,纵坐标不变,得到函数g(x)的图象,求g(x)的解析式;
(II)已知0<x1
π
2
x2<π
,且g(x1)=
6
2
5
,g(x2)=2
,求tan(x1+x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴一模)已知0<x<
π
2
,则下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 0<x<2,则函数y=x(1-
x
2
)
的最大值是(  )

查看答案和解析>>

同步练习册答案