精英家教网 > 高中数学 > 题目详情

设f(x)是定义在R上的奇函数且f(a+x)=f(a-x),则使数学公式=0成立的a值有________个.

1
分析:由已知可知,f(-x)=-f(x)结合条件f(a+x)=f(a-x)可求函数的周期,结合所求的式子即可求解a
解答:∵f(x)是定义在R上的奇函数
∴f(-x)=-f(x)
∵f(a+x)=f(a-x)
∴f(2a-x)=f(x)=-f(-x)
∴f(2a+x)=-f(x),f(4a+x)=f(x)即函数是以4a为周期的函数
当a=1时,周期T=4,
∵f(\frac{1}{2})+f(\frac{3}{2})+f(\frac{5}{2})+f(\frac{7}{2})=0成立
∴f(\frac{7}{2})=f(4-\frac{1}{2})=-f(\frac{1}{2}),f(\frac{5}{2})=f(4-\frac{3}{2})=-f(\frac{3}{2}),满足条件
∴a=1
故答案为:1
点评:本题主要考查了抽象函数的奇偶性及对称性及周期性的综合应用,解题的关键是熟练应用已知知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、设f(x)是定义在R上的奇函数,且f(3)+f(-2)=2,则f(2)-f(3)=
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,当x≥0时,f(x)=2x+2x-1,则f(-1)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且f(1)=0,当x>0时,有f(x)>xf′(x)恒成立,则不等式xf(x)>0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且y=f(x)满足f(1-x)=f(x),且f( 
1
2
 )=2
,则f(1)+f(
3
2
)+f(2)+f(
5
2
)+f(3)+f(
7
2
)
=
-2
-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2+a(a是常数).则x∈[2,4]时的解析式为(  )
A、f(x)=-x2+6x-8B、f(x)=x2-10x+24C、f(x)=x2-6x+8D、f(x)=x2-6x+8+a

查看答案和解析>>

同步练习册答案