精英家教网 > 高中数学 > 题目详情
过抛物线y2=4x的焦点F作弦AB,若
AF
=2
FB
,则弦AB所在直线的方程是_______.
设直线l的方程为y=kx+m(k≠0),与抛物线y2=4x相交于A(x1,y1),B(x2,y2).
联立
y2=4x
y=kx+m
,得k2x2+(2km-4)x+m2=0.
所以△=(2km-4)2-4k2m2=16-16km>0,即km<1.
x1+x2=
4-2km
k2
,x1x2=
m2
k2

由y2=4x得其焦点F(1,0).
AF
=2
FB
,得(1-x1,-y1)=2(x2-1,y2).
所以
1-x1=2x2-2①
-y1=2y2

由①得,x1+2x2=3 ③
由②得,x1+2x2=-
3m
k

所以m=-k.
再由
AF
=2
FB
,得|
AF
|=2|
FB
|,
所以x1+1=2(x2+1),即x1-2x2=1④
联立③④得x1=2,x2=
1
2

所以x1+x2=
4-2km
k2
=
5
2

把m=-k代入得
4-2k(-k)
k2
=
5
2
,解得|k|=2
2
,满足mk=-8<1.
所以k=±2
2

则弦AB所在直线的方程是 y=±2
2
(x-1)

故答案为:y=±2
2
(x-1)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

倾斜角为
π
4
的直线过抛物线y2=4x的焦点且与抛物线交于A,B两点,则|AB|=(  )
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F引两条互相垂直的直线AB、CD交抛物线于A、B、C、D四点.
(1)求当|AB|+|CD|取最小值时直线AB、CD的倾斜角的大小
(2)求四边形ACBD的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则△AOB的面积为
3
2
2
3
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则△AOB的面积为(  )
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,A、B两点在准线l上的射影分别为M.N,则∠MFN=(  )

查看答案和解析>>

同步练习册答案