精英家教网 > 高中数学 > 题目详情
设函数f(x)=x2+|2x-a|(x∈R,a为实数).
(1)若f(x)为偶函数,求实数a的值; 
(2)设a>2,求函数f(x)的最小值.
(1)由已知f(-x)=f(x),即|2x-a|=|2x+a|,解得a=0
(2)f(x)=
x2+2x-a,x≥
1
2
a
x2-2x+a,x<
1
2
a

x≥
1
2
a
时,f(x)=x2+2x-a=(x+1)2-(a+1)
a>2,x≥
1
2
a
,得x>1,从而x>-1
故f(x)在x≥
1
2
a
时单调递增,f(x)的最小值为f(
a
2
)=
a2
4

x<
1
2
a
时,f(x)=x2-2x+a=(x-1)2+(a-1)
故当1<x<
a
2
时,f(x)单调递增,当x<1时,f(x)单调递减
则f(x)的最小值为f(1)=a-1
a2
4
-(a-1)=
(a-2)2
4
>0
,知f(x)的最小值为a-1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案