精英家教网 > 高中数学 > 题目详情
双曲线C:
x2
a2
-
y2
b2
=1
上一点(2,
3
)
到左,右两焦点距离的差为2.
(1)求双曲线的方程;
(2)设F1,F2是双曲线的左右焦点,P是双曲线上的点,若|PF1|+|PF2|=6,求△PF1F2的面积;
(3)过(-2,0)作直线l交双曲线C于A,B两点,若
OP
=
OA
+
OB
,是否存在这样的直线l,使OAPB为矩形?若存在,求出l的方程,若不存在,说明理由.
(1)∵双曲线C:
x2
a2
-
y2
b2
=1
上一点(2,
3
)
到左,右两焦点距离的差为2.
∴a=1,双曲线方程为x2-
y2
b2
=1

把点(2,
3
)
2,
3
)代入,得b=1.
∴双曲线方程为:x2-y2=1.
(2)设P在第一象限,则
|PF1| -|PF2|=2
|PF1| +|PF2|=6

解得|PF1|=4,|PF2|=2,
cos∠F1PF2=
3
4

sin∠F1PF=
7
4

∴△PF1F2的面积S=
7

(3)若直线斜率存在,设为y=k(x+2),代入x2-y2=1,
得(1-(1-k2)x2-4k2x-4k2-1=0(k≠±1),
若平行四边形OAPB为矩形,则OA⊥OB,
∴x1x2+y1y2=0,
k2+1
k2-1
=0
无解.
若直线垂直x轴,则A(-2,
3
),B(-2,
3
)不满足.
故不存在直线l,使OAPB为矩形.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0)
的一条渐近线与抛物线x=y2的一个交点的横坐标为
x
 
0
,若
x
 
0
1
2
,则双曲线C的离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•兰州模拟)已知F为双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦点,P为双曲线C右支上一点,且位于x轴上方,M为直线x=-
a2
c
上一点,O为坐标原点,已知
OP
=
OF
+
OM
,且|
OF
|=|
OM
|
,则双曲线C的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C:
x2
a2
-
y2
b2
=1
(b>a>0)的左、右焦点分别为F1,F2.若在双曲线的右支上存在一点P,使得|PF1|=3|PF2|,则双曲线C的离心率e的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)设双曲线C:
x2
a2
-
y2
b2
=1
(a>b>0)的右焦点为F,左右顶点分别为A1,A2,过F且与双曲线C的一条渐近线平行的直线与另一条渐近线相交于P,若P恰好在以A1A2为直径的圆上,则双曲线的离心率为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设P为双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的渐近线在第一象限内的部分上一动点,F为双曲线C的右焦点,A为双曲线C的右准线与x轴的交点,e是双曲线C的离心率,则∠APF的余弦的最小值为(  )

查看答案和解析>>

同步练习册答案