精英家教网 > 高中数学 > 题目详情
已知M(2,0),N(-2,0),动点P满足|PN|-|PM|=2,点P的轨迹为W,过点M的直线与轨迹W交于A,B两点.
(Ⅰ)求轨迹W的方程;
(Ⅱ)若2
AM
=
MB
,求直线AB斜率k的值,并判断以线段AB为直径的圆与直线x=
1
2
的位置关系,并说明理由.
(Ⅰ)∵|PN|-|PM|=2<|MN|=4,
∴点P的轨迹是以M,N为焦点的双曲线的右支,
a=1,c=2,b=
3

∴轨迹W的方程为x2-
y
3
2
=1(x≥1)
.(4分)
(Ⅱ)设直线AB的方程为y=k(x-2).
y=k(x-2)
x2-
y
3
2
=1
得(3-k2)x2+4k2x-4k2-3=0.(5分)
设A(x1,y1).B(x2,y2),
x1+x2=
4k2
k2-3
>0
,①
x1x2=
4k2+3
k2-3
>0
,②
△=16k4+4(3-k2)(4k2+3)>0.③(8分)
由①②③解得k2>3.(9分)
2
AM
=
MB

∴2(2-x1,-y1)=(x2-2,y2),
∴x2=6-2x1.代入①②,得
4k2
k2-3
=6-x1
4k2+3
k2-3
=x1(6-2x1)

消掉x1k2=35,k=±
35
.(11分)
∵M(2,0)为双曲线右支的焦点,离心率e=2.由双曲线的几何性质,
|AB|=e(x1+x2)-2a=2×
4k2
k2-3
-2=
6(k2+1)
k2-3

设以AB为直径的圆的圆心为Q,Q到直线l的距离为d,
则d=
x1+x2
2
-
1
2
=
3(k2+1)
2(k2-3)

d-
|AB|
2
=
3(k2+1)
2(k2-3)
-
3(k2+1)
k2-3
=-
3(k2+1)
2(k2-3)
<0

d<
|AB|
2
,直线l与圆Q相交.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知定点A(0,-1),点B在圆F:x2+(y-1)2=16上运动,F为圆心,线段AB的垂直平分线交BF于P.
(I)求动点P的轨迹E的方程;若曲线Q:x2-2ax+y2+a2=1被轨迹E包围着,求实数a的最小值.
(II)已知M(-2,0)、N(2,0),动点G在圆F内,且满足|MG|•|NG|=|OG|2,求
MG
NG
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M (-2,0),N (4,0),则以MN为斜边的直角三角形直角顶点P的轨迹方程是
(x-1)2+y2=9(y≠0)
(x-1)2+y2=9(y≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M(-2,0),N(2,0),|PM|-|PN|=3,则动点P的轨迹为
以M,N 为焦点的双曲线的右支
以M,N 为焦点的双曲线的右支

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M(-2,0),N(2,0),|PM|-|PN|=2,则动点P的轨迹是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M(-2,0),N(2,0),则以MN为斜边的直角三角形直角顶点P的轨迹方程是
x2+y2=4(x≠±2)
x2+y2=4(x≠±2)

查看答案和解析>>

同步练习册答案