精英家教网 > 高中数学 > 题目详情
函数分f(x)=|sinx|+sin|x|的值域是(  )
分析:可分析函数f(x)的奇偶性,对x分x∈[2kπ,2kπ+π]与x∈[2kπ-π,2kπ)讨论,利用函数的性质即可得到答案.
解答:解:∵f(-x)=|sin-x|+sin|-x|=|sinx|+sin|x|=f(x),
∴函数f(x)=|sin x|+sin|x|为偶函数,其图象关于y轴对称,
当x∈[2kπ,2kπ+π]时函数值为0≤y≤2;
当x∈[2kπ-π,2kπ)时函数值y=0;
∴f(x)=|sinx|+sin|x|的值域[0,2].
故选B.
点评:本题考查正弦函数的定义域和值域,考查正弦函数的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
.
m
=(cosωx,sinωx),
.
n
=(cosωx,2
3
cosωx-sinωx),ω>0,函数f(x)=
.
m
.
n
+|
.
m
|,且函数f(x)图象的相邻两条对称轴之间的距离为
π
2

(1)作出函数y=f(x)-1在[0,π]上的图象
(2)在△ABC中,a,b,c分别是角A,B,C的对边,f(A)=2,c=2,S△ABC=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上任一点P到两焦点的距离的和为6,离心率为
2
2
3
,A、B分别是椭圆的左右顶点.
(1)求椭圆的标准方程;
(2)设C(x,y)(0<x<a)为椭圆上一动点,D为C关于y轴的对称点,四边形ABCD的面积为S(x),设f(x)=
[S(x)]2
x+3
,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•潍坊二模)已知函数f(x)=x(x-a)(x-b),其中a、b∈R
(I)当a=0,b=3时,求函数,f(x)的极值;
(Ⅱ)当a=0时,
f(x)x2
-lnx≥0在[1,+∞)上恒成立,求b的取值范围
(Ⅲ)若0<a<b,点A(s,f(s)),B(t,f(t))分别是函数f(x)的两个极值点,且0A⊥OB,其中0为原点,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源:潍坊二模 题型:解答题

已知函数f(x)=x(x-a)(x-b),其中a、b∈R
(I)当a=0,b=3时,求函数,f(x)的极值;
(Ⅱ)当a=0时,
f(x)
x2
-lnx≥0在[1,+∞)上恒成立,求b的取值范围
(Ⅲ)若0<a<b,点A(s,f(s)),B(t,f(t))分别是函数f(x)的两个极值点,且0A⊥OB,其中0为原点,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上任一点P到两焦点的距离的和为6,离心率为
2
2
3
,A、B分别是椭圆的左右顶点.
(1)求椭圆的标准方程;
(2)设C(x,y)(0<x<a)为椭圆上一动点,D为C关于y轴的对称点,四边形ABCD的面积为S(x),设f(x)=
[S(x)]2
x+3
,求函数f(x)的最大值.

查看答案和解析>>

同步练习册答案