15£®¶ÔÓÚ?n¡ÊN*£¬ÈôÊýÁÐ{xn}Âú×ãxn+1-xn£¾1£¬Ôò³ÆÕâ¸öÊýÁÐΪ¡°KÊýÁС±£®
£¨¢ñ£©ÒÑÖªÊýÁУº1£¬m+1£¬m2ÊÇ¡°KÊýÁС±£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨¢ò£©ÊÇ·ñ´æÔÚÊ×ÏîΪ-1µÄµÈ²îÊýÁÐ{an}Ϊ¡°KÊýÁС±£¬ÇÒÆäǰnÏîºÍSnÂú×ã${S_n}£¼\frac{1}{2}{n^2}-n£¨n¡Ê{N^*}£©$£¿Èô´æÔÚ£¬Çó³ö{an}µÄͨÏʽ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ó£©ÒÑÖª¸÷Ïî¾ùΪÕýÕûÊýµÄµÈ±ÈÊýÁÐ{an}ÊÇ¡°KÊýÁС±£¬ÊýÁÐ$\left\{{\frac{1}{2}{a_n}}\right\}$²»ÊÇ¡°KÊýÁС±£¬Èô${b_n}=\frac{{{a_{n+1}}}}{n+1}$£¬ÊÔÅжÏÊýÁÐ{bn}ÊÇ·ñΪ¡°KÊýÁС±£¬²¢ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâµÃ£¨m+1£©-1£¾1£¬m2-£¨m+1£©£¾1£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨¢ò£©¼ÙÉè´æÔڵȲîÊýÁÐ{an}·ûºÏÒªÇó£¬É蹫²îΪd£¬Ôòd£¾1£¬ÓÉÌâÒ⣬µÃ$-n+\frac{n£¨n-1£©}{2}d£¼\frac{1}{2}{n^2}-n$¶Ôn¡ÊN*¾ù³ÉÁ¢£¬»¯Îª£¨n-1£©d£¼n£®¶Ôn·ÖÀàÌÖÂÛ½â³ö¼´¿ÉµÃ³ö£®
£¨¢ó£©ÉèÊýÁÐ{an}µÄ¹«±ÈΪq£¬Ôò${a_n}={a_1}{q^{n-1}}$£¬ÓÉÌâÒâ¿ÉµÃ£º{an}µÄÿһÏî¾ùΪÕýÕûÊý£¬ÇÒan+1-an=anq-an=an£¨q-1£©£¾1£¾0£¬¿ÉµÃa1£¾0£¬ÇÒq£¾1£®ÓÉan+1-an=q£¨an-an-1£©£¾an-an-1£¬¿ÉµÃÔÚ{an-an-1}ÖУ¬¡°a2-a1¡±Îª×îСÏͬÀí£¬ÔÚ$\{\frac{1}{2}{a_n}-\frac{1}{2}{a_{n-1}}\}$ÖУ¬¡°$\frac{1}{2}{a_2}-\frac{1}{2}{a_1}$¡±Îª×îСÏÔÙÀûÓá°KÊýÁС±£¬¿ÉµÃa1=1£¬q=3»òa1=2£¬q=2£®½ø¶øµÃ³ö£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâµÃ£¨m+1£©-1£¾1£¬¢Ùm2-£¨m+1£©£¾1£¬¢Ú
½â¢ÙµÃ m£¾1£»
½â¢ÚµÃ m£¼-1»òm£¾2£®
ËùÒÔm£¾2£¬¹ÊʵÊýmµÄȡֵ·¶Î§ÊÇm£¾2£®
£¨¢ò£©¼ÙÉè´æÔڵȲîÊýÁÐ{an}·ûºÏÒªÇó£¬É蹫²îΪd£¬Ôòd£¾1£¬
ÓÉ a1=-1£¬µÃ ${S_n}=-n+\frac{n£¨n-1£©}{2}d$£¬£®
ÓÉÌâÒ⣬µÃ$-n+\frac{n£¨n-1£©}{2}d£¼\frac{1}{2}{n^2}-n$¶Ôn¡ÊN*¾ù³ÉÁ¢£¬
¼´£¨n-1£©d£¼n£®
¢Ùµ±n=1ʱ£¬d¡ÊR£»
¢Úµ±n£¾1ʱ£¬$d£¼\frac{n}{n-1}$£¬
ÒòΪ$\frac{n}{n-1}=1+\frac{1}{n-1}£¾1$£¬
ËùÒÔd¡Ü1£¬Óëd£¾1ì¶Ü£¬
¹ÊÕâÑùµÄµÈ²îÊýÁÐ{an}²»´æÔÚ£®
£¨¢ó£©ÉèÊýÁÐ{an}µÄ¹«±ÈΪq£¬Ôò${a_n}={a_1}{q^{n-1}}$£¬
ÒòΪ{an}µÄÿһÏî¾ùΪÕýÕûÊý£¬ÇÒan+1-an=anq-an=an£¨q-1£©£¾1£¾0£¬
ËùÒÔa1£¾0£¬ÇÒq£¾1£®
ÒòΪan+1-an=q£¨an-an-1£©£¾an-an-1£¬
ËùÒÔÔÚ{an-an-1}ÖУ¬¡°a2-a1¡±Îª×îСÏ
ͬÀí£¬ÔÚ$\{\frac{1}{2}{a_n}-\frac{1}{2}{a_{n-1}}\}$ÖУ¬¡°$\frac{1}{2}{a_2}-\frac{1}{2}{a_1}$¡±Îª×îСÏ
ÓÉ{an}Ϊ¡°KÊýÁС±£¬Ö»Ðèa2-a1£¾1£¬¼´ a1£¨q-1£©£¾1£¬
ÓÖÒòΪ$\{\frac{1}{2}{a_n}\}$²»ÊÇ¡°KÊýÁС±£¬ÇÒ¡°$\frac{1}{2}{a_2}-\frac{1}{2}{a_1}$¡±Îª×îСÏËùÒÔ$\frac{1}{2}{a_2}-\frac{1}{2}{a_1}¡Ü1$£¬¼´ a1£¨q-1£©¡Ü2£¬
ÓÉÊýÁÐ{an}µÄÿһÏî¾ùΪÕýÕûÊý£¬¿ÉµÃ a1£¨q-1£©=2£¬
ËùÒÔa1=1£¬q=3»òa1=2£¬q=2£®
¢Ùµ±a1=1£¬q=3ʱ£¬${a_n}={3^{n-1}}$£¬Ôò${b_n}=\frac{3^n}{n+1}$£¬
Áî${c_n}={b_{n+1}}-{b_n}£¨n¡Ê{N^*}£©$£¬Ôò${c_n}=\frac{{{3^{n+1}}}}{n+2}-\frac{3^n}{n+1}={3^n}•\frac{2n+1}{£¨n+1£©£¨n+2£©}$£¬
ÓÖ${3^{n+1}}•\frac{2n+3}{£¨n+2£©£¨n+3£©}-{3^n}•\frac{2n+1}{£¨n+1£©£¨n+2£©}$=$\frac{3^n}{n+2}•\frac{{4{n^2}+8n+6}}{£¨n+1£©£¨n+3£©}£¾0$£¬
ËùÒÔ{cn}ΪµÝÔöÊýÁУ¬¼´ cn£¾cn-1£¾cn-2£¾¡­£¾c1£¬
ËùÒÔbn+1-bn£¾bn-bn-1£¾bn-1-bn-2£¾¡­£¾b2-b1£®
ÒòΪ${b_2}-{b_1}=3-\frac{3}{2}=\frac{3}{2}£¾1$£¬
ËùÒÔ¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐbn+1-bn£¾1£¬
¼´ÊýÁÐ{cn}Ϊ¡°KÊýÁС±£®
¢Úµ±a1=2£¬q=2ʱ£¬${a_n}={2^n}$£¬Ôò${b_n}=\frac{{{2^{n+1}}}}{n+1}$£®ÒòΪ${b_2}-{b_1}=\frac{2}{3}¡Ü1$£¬
ËùÒÔÊýÁÐ{bn}²»ÊÇ¡°KÊýÁС±£®
×ÛÉÏ£ºµ±${a_n}={3^{n-1}}$ʱ£¬ÊýÁÐ{bn}Ϊ¡°KÊýÁС±£¬
µ±${a_n}={2^n}$ʱ£¬ÊýÁÐ{bn}²»ÊÇ¡°KÊýÁС±£®

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½¡¢²»µÈʽµÄ½â·¨¡¢·ÖÀàÌÖÂÛ·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªËÄÀâ×¶P-ABCDµÄµ×ÃæABCDÊÇÆ½ÐÐËıßÐΣ¬PA¡ÍÆ½ÃæABCD£¬PA=AB=AC=2£¬AD=2$\sqrt{2}$£¬µãEÊÇÏß¶ÎABÉÏ¿¿½üBµãµÄÈýµÈ·Öµã£¬µãF¡¢G·Ö±ðÔÚÏß¶ÎPD¡¢PCÉÏ£®
£¨¢ñ£©Ö¤Ã÷£ºCD¡ÍAG£»
£¨¢ò£©ÈôÈýÀâ×¶E-BCFµÄÌå»ýΪ$\frac{1}{6}$£¬Çó$\frac{FD}{PD}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªº¯Êý$f£¨x£©=\left\{\begin{array}{l}1£¬0¡Üx£¼\frac{1}{2}\\-1£¬\frac{1}{2}¡Üx£¼1\\ 0£¬\;x£¼0»òx¡Ý1\end{array}\right.$ºÍ$g£¨x£©=\left\{\begin{array}{l}1£¬0¡Üx£¼1\\ 0£¬x£¼0»òx¡Ý1\end{array}\right.$
Ôòg£¨2x£©=$\left\{\begin{array}{l}{1£¬0¡Üx£¼\frac{1}{2}}\\{0£¬x£¼0»òx¡Ý\frac{1}{2}}\end{array}\right.$£»
Èôm£¬n¡ÊZ£¬ÇÒm•g£¨n•x£©-g£¨x£©=f£¨x£©£¬Ôòm+n=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªa£¬b¡ÊR£¬Ôò¡°b¡Ù0¡±ÊÇ¡°¸´Êýa+biÊÇ´¿ÐéÊý¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö¶ø²»±ØÒªÌõ¼þB£®±ØÒª¶ø²»³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=ex-e-x£¬ÏÂÁÐÃüÌâÕýÈ·µÄÓТ٢ڢܣ®£¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄ±àºÅ£©
¢Ùf£¨x£©ÊÇÆæº¯Êý£»
¢Úf£¨x£©ÔÚRÉÏÊǵ¥µ÷µÝÔöº¯Êý£»
¢Û·½³Ìf£¨x£©=x2+2xÓÐÇÒ½öÓÐ1¸öʵÊý¸ù£»
¢ÜÈç¹û¶ÔÈÎÒâx¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐf£¨x£©£¾kx£¬ÄÇôkµÄ×î´óֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Éèa+b=M£¨a£¾0£¬b£¾0£©£¬MΪ³£Êý£¬ÇÒabµÄ×î´óֵΪ2£¬ÔòMµÈÓÚ2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Ä³¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÊýÁÐ{an}µÄǰ9ÏîºÍΪ153£¬ÇÒµãP£¨an£¬an+1£©£¨n¡ÊN+£©ÔÚÖ±Ïßx-y+3=0ÉÏ
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©´ÓÊýÁÐ{an}ÖУ¬ÒÀ´ÎÈ¥³ýµÚ2Ïî¡¢µÚ8Ïî¡¢µÚ24Ïî¡­µÚn•2nÏ°´Ô­À´µÄ˳Ðò×é³ÉÒ»¸öеÄÊýÁÐ{bn}£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn
£¨¢ó£©ÇóÖ¤£º$\frac{1}{{b}_{1}}+\frac{1}{{b}_{2}}+$¡­+$\frac{1}{{b}_{n}}$£¼$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®½Ç12¡ã»¯Îª»¡¶ÈÊÇ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{15}$B£®$\frac{¦Ð}{12}$C£®$\frac{¦Ð}{16}$D£®$\frac{¦Ð}{18}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸