精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a-
22x+1
,(a∈R)
是奇函数.
(1)求a的值;(2)求证f(x)是R上的增函数;(3)求证xf(x)≥0恒成立.
分析:(1)由函数f(x)=a-
2
2x+1
,(a∈R)
是奇函数,其定义域为R,根据定义在R上奇函数图象必过原点,可得f(0)=0,解方程可求出a值;
(2)根据(1)的结论化简函数的解析式,并任取R上两个实数x1,x2,且x1<x2,作差判断f(x1),f(x2)的大小,进而根据函数单调性的定义得到答案.
(3)根据f(0)=0,f(x)是R上的增函数,可得当x<0时,f(x)<0,当x=0时,f(x)=0,当x>0时,f(x)>0,综合讨论结果,可得答案.
解答:解:(1)∵函数f(x)=a-
2
2x+1
,(a∈R)
的定义域为R
根据定义在R上奇函数图象必过原点
f(0)=a-
2
20+1
=0
解得a=1;
证明:(2)由(1)可得f(x)=1-
2
2x+1
=
2x -1
2x +1

任取R上两个实数x1,x2,且x1<x2
则x1-x2<0,2x1+1>0,2x2+1>0,
则f(x1)-f(x2)=
2x1-1
2x1+1
-
2x2-1
2x2+1

=
(2x1-1)•(2x2+1)-(2x2-1)•(2x1+1)
(2x1+1)•(2x2+1)

=
(2x+x2-2x2+2x1-1)-(2x+x2+2x2-2x1-1)
(2x1+1)•(2x2+1)

=
2(2x1-2x2)
(2x1+1)•(2x2+1)
<0
即f(x1)<f(x2
∴f(x)是R上的增函数;
(3)由(1)(2)得,
当x<0时,f(x)<0,此时xf(x)>0
当x=0时,f(x)=0,此时xf(x)=0
当x>0时,f(x)>0,此时xf(x)>0
故xf(x)≥0恒成立
点评:本题考查的知识点是奇偶性与单调性的综合,熟练掌握函数奇偶性的性质及单调性的证明方法步骤是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案