精英家教网 > 高中数学 > 题目详情
将函数y=tan(2x+
π
3
)
的图象按向量a=(
π
12
,1)
平移,则平移后所得图象的解析式为(  )
A.y=tan(2x+
π
4
)-1
B.y=tan(2x+
π
6
)-1
C.y=tan(2x+
π
4
)+1
D.y=tan(2x+
π
6
)+1
函数y=tan(2x+
π
3
)
的图象按向量a=(
π
12
,1)
平移,∴将函数y=tan(2x+
π
3
)
的图象向右平移
π
12
个单位,再向上平移1个单位可得到y=tan[2(x-
π
12
)+
π
3
]+1
=tan(2x+
π
6
)+1
的图象.
故选D.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网下列四个命题中,真命题的序号有
 
(写出所有真命题的序号).
①将函数y=|x+1|的图象按向量y=(-1,0)平移,得到的图象对应的函数表达式为y=|x|.
②圆x2+y2+4x-2y+1=0与直线y=
1
2
x
相交,所得弦长为2.
③若sin(α+β)=
1
2
,sin(α-β)=
1
3
,则tanαcotβ=5.
④如图,已知正方体ABCD-A1B1C1D1,P为底面ABCD内一动点,P到平面AA1D1D的距离与到直线CC1的距离相等,则P点的轨迹是抛物线的一部分.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数f(x)=sinx+|sinx|(x∈R)的最小正周期是2π;
②已知函数f(x)=
acosx,x≥0
x2-1,x<0
在x=0处连续,则a=-1;
③函数y=f(x)与y=1-f-1(1-x)的图象关于直线x+y+1=0对称;
④将函数y=tan(ωx+
π
4
)(ω>0)
的图象按向量
a
=(
π
6
,0)
平移后,与函数y=tan(ωx+
π
6
)
的图象重合,则ω的最小值为
1
6
,你认为正确的命题有:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题的是

①函数y=cos(2x+
π
2
)+1
的图象的一个对称中心是(-
π
2
,0)

②要得到函数y=cos(-
π
3
+2x)
的图象,只需将函数y=sin2x的图象向左平移
π
12
个单位;
α=
π
4
+2kπ
是tanα=1的充要条件;
④函数y=sinx-
3
cosx  x∈[-π,0]
的单调递增区间是[-
5
6
π, -
π
6
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=-2与函数y=tan(ωx+
π
4
)图象相邻两交点间的距离为
π
2
,将y=tan(ωx+
π
4
)图象向右平移φ(φ>0)个单位后,其图象关于原点对称,则φ的最小值为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①函数f(x)=sinx+|sinx|(x∈R)的最小正周期是2π;
②已知函数f(x)=
acosx,x≥0
x2-1,x<0
在x=0处连续,则a=-1;
③函数y=f(x)与y=1-f-1(1-x)的图象关于直线x+y+1=0对称;
④将函数y=tan(ωx+
π
4
)(ω>0)
的图象按向量
a
=(
π
6
,0)
平移后,与函数y=tan(ωx+
π
6
)
的图象重合,则ω的最小值为
1
6
,你认为正确的命题有:______.

查看答案和解析>>

同步练习册答案