精英家教网 > 高中数学 > 题目详情
已知椭圆M:
x2
a2
+
y2
b2
=1 (a>b>0)
的离心率为
3
2
,短轴的长为2.
(1)求椭圆M的标准方程
(2)若经过点(0,2)的直线l与椭圆M交于P,Q两点,满足
OP
OQ
=0
,求l的方程.
(1)由e=
c
a
=
3
2
,b=1,a2=b2+c2
得a=2(2分)
所以椭圆方程为
x2
4
+y2=1
(4分)
(2)设P(x1,y1),Q(x2,y2)设直线l:y=kx+2(5分)
x2
4
+y2=1
y=kx+2
得(1+4k2)x2+16kx+12=0△=64k2-48>0①(7分)
x1+x2=-
16k
1+4k2
x1x2=
12
1+4k2
②∵
OP
OQ
=0

∴x1x2+(kx1+2)(kx2+2)=0(1+k2)x1x2+2k(x1+x2)+4=0③(10分)
由②③解得k=±2满足①所以l:2x-y+2=0或2x+y-2=0(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•西城区二模)已知椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
3
,且椭圆上一点与椭圆的两个焦点构成的三角形周长为6+4
2

(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l与椭圆M交于A,B两点,且以AB为直径的圆过椭圆的右顶点C,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•昌平区一模)已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
,其短轴的一个端点到右焦点的距离为2,且点A(
2
,1)在椭圆M上.直线l的斜率为
2
2
,且与椭圆M交于B、C两点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
3
,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4
2

(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l:x=ky+m与椭圆M交手A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
,直线y=kx(k≠0)与椭圆M交于A、B两点,直线y=-
1
k
x
与椭圆M交于C、D两点,P点坐标为(a,0),直线PA和PB斜率乘积为-
1
2

(1)求椭圆M离心率;
(2)若弦AC的最小值为
2
6
3
,求椭圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•昌平区二模)如图,已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
,离心率e=
6
3
,椭圆与x正半轴交于点A,直线l过椭圆中心O,且与椭圆交于B、C两点,B(1,1).
(Ⅰ) 求椭圆M的方程;
(Ⅱ)如果椭圆上有两点P、Q,使∠PBQ的角平分线垂直于AO,问是否存在实数λ(λ≠0)使得
PQ
AC
成立?

查看答案和解析>>

同步练习册答案