精英家教网 > 高中数学 > 题目详情

比较(a0a1)的大小

答案:
解析:

令2x2+1>x2+2,得x>1或x<-1.

①当a>1时,有:x>1或x<-1时,2x2+1>x2+2,从而

a=±1时,2x2+1=x2+2,从而a2x2+1=ax2+2

③当0<a<1时,同理可得:

x>1或x<-1时,

x=±1时,

3°-1<x<1时,


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=
1+ax
1-ax
(a>0且a≠1),g(x)是f(x)的反函数.
(1)求g(x);
(2)当x∈[2,6]时,恒有g(x)>loga
t
(x2-1)(7-x)
成立,求t的取值范围;
(3)当0<a≤
1
2
时,试比较f(1)+f(2)+…+f(n)与n+4的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x),偶函数g(x)满足f(x)+g(x)=ax(a>0且a≠1).
(1)求证:f(2x)=2f(x)g(x);
(2)设f(x)的反函数f-1(x),当a=
2
-1
时,比较f-1[g(x)]与-1的大小,证明你的结论;
(3)若a>1,n∈N*,且n≥2,比较f(n)与nf(1)的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:044

比较(a0a1)的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知奇函数f(x),偶函数g(x)满足f(x)+g(x)=ax(a>0且a≠1).
(1)求证:f(2x)=2f(x)g(x);
(2)设f(x)的反函数f-1(x),当a=
2
-1
时,比较f-1[g(x)]与-1的大小,证明你的结论;
(3)若a>1,n∈N*,且n≥2,比较f(n)与nf(1)的大小,并证明你的结论.

查看答案和解析>>

同步练习册答案