精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A、B、C的对边分别是a,b,c,已知2acosA=-$\sqrt{3}$(ccosB+bcosC).
(1)求角A;
(2)若b=2,且△ABC的面积为$\frac{\sqrt{3}}{2}$,求a的值.

分析 (1)根据正弦定理和两角和得正弦公式和诱导公式可得,
(2)先由三角形的面积公式求出c,再根据余弦定理即可求出.

解答 解:(1)∵2acosA=-$\sqrt{3}$(ccosB+bcosC)
由正弦定理可得2sinAcosA=-$\sqrt{3}$(sinCcosB+sinBcosC)=-$\sqrt{3}$sin(B+C)=-$\sqrt{3}$sinA,
∵sinA≠0,
∴cosA=-$\frac{\sqrt{3}}{2}$,
∴A=$\frac{5π}{6}$
(2)b=2,且△ABC的面积为$\frac{\sqrt{3}}{2}$,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×2×$\frac{1}{2}$c=$\frac{\sqrt{3}}{2}$,
解得c=$\sqrt{3}$,
由余弦定理可得a2=b2+c2-2bccosA=4+3-2×2×$\sqrt{3}$×(-$\frac{\sqrt{3}}{2}$)=13,
则a=$\sqrt{13}$

点评 本题考查三角函数的化简,正弦定理、余弦定理和三角形的面积公式应用等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若$p:({x^2}+6x+8)\sqrt{x+3}≥0$;q:x=-3,则命题p是命题q的必要而不充分条件 (填“充分而不必要、必要而不充分、充要、既不充分也不必要”).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,曲线C1:(x-2)2+y2=4,曲线C2:$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ为参数).
(Ⅰ)以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C1,C2的极坐标方程;
(Ⅱ)在(Ⅰ)的极坐标系中,射线θ=$\frac{π}{3}$与曲线C1,C2分别交于A,B两点,定点M(4,0),求△MAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图所示的数阵中,用A(m,n)表示第m行的第n个数,则以此规律A(8,2)为$\frac{1}{122}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某三棱锥的三视图如图所示,则该三棱锥最长的棱为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某多面体的三视图如图所示,则该多面体的体积为(  )
A.2B.$\frac{20}{3}$C.$\frac{22}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.从一批苹果中,随机抽取65个,其重量(克)的数据分布表如下:
分组(重量)[80,85)[85,90)[90,95)[95,100)
频数(个)5153015
(1)用分层抽样的方法从重量在[80,85)和[95,100)的品种共抽取4个,重量在[80,85)的有几个?
(2)在(1)中抽取4个苹果中任取2个,其重量在[80,85)和[95,100)中各有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,面积为S的正方形ABCD中有一个不规则的图形M,可以用随机模拟方法近似计算M的面积,在正方向ABCD中随机投掷3600个点,若恰好有1200个点落入M中,则M的面积的近似值为$\frac{S}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知复数z=3+bi,(b为正实数),且(z-2)2为纯虚数.若w=(2+i)z求复数w的模.
(2)有以下三个不等式:
(12+42)(92+52)≥(1×9+4×5)2;(62+82)(22+122)≥(6×2+8×12)2;(202+102)(1022+72)≥(20×102+10×7)2
请你观察这三个不等式,猜想出一个一般性的结论,并证明你的结论.

查看答案和解析>>

同步练习册答案