精英家教网 > 高中数学 > 题目详情
(2012•信阳模拟)已知tan(α+β)=-1,tan(α-β)=
1
2
,则
sin2α
sin2β
的值是
1
3
1
3
分析:由于(α+β)+(α-β)=2α,(α+β)-(α-β)=2α,利用两角和与两角差的正弦将所求式子的分子与分母展开,转化为切函数即可.
解答:解:∵tan(α+β)=-1,tan(α-β)=
1
2

(α+β)+(α-β)=2α,(α+β)-(α-β)=2β,
sin2α
sin2β
=
sin[(α+β)+(α-β)]
sin[(α+β)-(α-β)]

=
sin(α+β)cos(α-β)+cos(α+β)sin(α-β)
sin(α+β)cos(α-β)-cos(α+β)sin(α-β)

=
tan(α+β)+tan(α-β)
tan(α+β)-tan(α-β)

=
-1+
1
2
-1-
1
2

=
1
3

故答案为:
1
3
点评:本题考查三角函数的恒等变换及化简求值,考查两角和与两角差的正弦,考查弦化切,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•信阳模拟)某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+21x和L2=2x,其中x为销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•信阳模拟)已知x=1是f(x)=2x+
b
x
+lnx
的一个极值点
(Ⅰ)求b的值;
(Ⅱ)求函数f(x)的单调减区间;
(Ⅲ)设g(x)=f(x)-
3
x
,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•信阳模拟)函数f(x)=log2x与g(x)=(
1
2
)x-1
在同一直角坐标系中的图象是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•信阳模拟)若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是
(-
3
3
,0)∪(0,
3
3
(-
3
3
,0)∪(0,
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•信阳模拟)先将函数f(x)=2sin(2x-
π
6
)的周期变为原来的2倍,再将所得函数的图象向右平移
π
6
个单位,则所得函数图象的解析式为(  )

查看答案和解析>>

同步练习册答案