精英家教网 > 高中数学 > 题目详情
设a=cos,b=sin(-380°),则

[     ]

A、a>0,b>0
B、a>0,b<0
C、a<0,b>0
D、a<0,b<0
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义非零向量
OM
=(a,b)
的“相伴函数”为f(x)=asinx+bcosx(x∈R),向量
OM
=(a,b)
称为函数f(x)=asinx+bcosx的“相伴向量”(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.
(1)设h(x)=cos(x+
π
6
)-2cos(x+a)(a∈R),求证:h(x)∈S;
(2)求(1)中函数h(x)的“相伴向量”模的取值范围;
(3)已知点M(a,b)(b≠0)满足:(a-
3
)2+(b-1)2=1
上一点,向量
OM
的“相伴函数”f(x)在x=x0处取得最大值.当点M运动时,求tan2x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•崇明县一模)设函数f(x)=cos(2x+
π
3
)+sin2x

(1)求函数f(x)的最大值和最小正周期;
(2)设A,B,C为△ABC的三个内角,f(
C
2
)=-
1
4
,且C为锐角,S△ABC=5
3
,a=4,求c边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)设函数f(x)=cos(2x+
π
3
)+
3
sin2x

(1)求函数f(x)的最大值和及相应的x的值;
(2)设A,B,C为△ABC的三个内角,f(
C
2
-
π
12
)=
3
2
S△ABC=5
3
,a=4
,求角C的大小及b边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,A,B,C分别是三边a,b,c的对角.设数学公式=(cos数学公式,sin数学公式 ),数学公式=(cos数学公式,-sin数学公式 ),数学公式数学公式的夹角为数学公式
(Ⅰ)求C的大小;
(Ⅱ)已知c=数学公式,三角形的面积S=数学公式,求a+b的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义非零向量
OM
=(a,b)
的“相伴函数”为f(x)=asinx+bcosx(x∈R),向量
OM
=(a,b)
称为函数f(x)=asinx+bcosx的“相伴向量”(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.
(1)设h(x)=cos(x+
π
6
)-2cos(x+a)(a∈R),求证:h(x)∈S;
(2)求(1)中函数h(x)的“相伴向量”模的取值范围;
(3)已知点M(a,b)(b≠0)满足:(a-
3
)2+(b-1)2=1
上一点,向量
OM
的“相伴函数”f(x)在x=x0处取得最大值.当点M运动时,求tan2x0的取值范围.

查看答案和解析>>

同步练习册答案