精英家教网 > 高中数学 > 题目详情

已知椭圆C两个焦点分别为,离心率,P是椭圆C在第一象限内的一点,且

   (1)求椭圆C的标准方程;

   (2)求点P的坐标;

   (3)若点Q是椭圆C上不同于P的另一点,问是否存在以PQ为直径的圆G过点F2?若存在,求出圆G的方程,若不存在,说明理由。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•成都模拟)已知椭圆的两个焦点F1(0,1)、F2(0,1)、直线y=4是它的一条准线,A1、A2分别是椭圆的上、下两个顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设以原点为顶点,A1点的抛物线为C,若过点F1的直线l与C交于不同的两点M、N,求线段MN的中点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2014届江西省高二月考理科数学试卷(解析版) 题型:解答题

(13分) 如图,已知椭圆的两个焦点分别为,斜率为k的直线l过左焦点F1且与椭圆的交点为A,B与y轴交点为C,又B为线段CF1的中点,若,求椭圆离心率e的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:成都模拟 题型:解答题

已知椭圆的两个焦点F1(0,1)、F2(0,1)、直线y=4是它的一条准线,A1、A2分别是椭圆的上、下两个顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设以原点为顶点,A1点的抛物线为C,若过点F1的直线l与C交于不同的两点M、N,求线段MN的中点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题18分)已知椭圆C:的右焦点为B(1,0),右准线与x轴的交点为A(5,0),过点A作直线交椭圆C于两个不同的点P、Q.

(1)求椭圆C的方程;

(2)求直线斜率的取值范围;

(3)是否存在直线,使得,若存在,求出的方程;若不存在,说明理由.

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2008-2009学年四川省成都市高三摸底数学试卷(文科)(解析版) 题型:解答题

已知椭圆的两个焦点F1(0,1)、F2(0,1)、直线y=4是它的一条准线,A1、A2分别是椭圆的上、下两个顶点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设以原点为顶点,A1点的抛物线为C,若过点F1的直线l与C交于不同的两点M、N,求线段MN的中点Q的轨迹方程.

查看答案和解析>>

同步练习册答案