精英家教网 > 高中数学 > 题目详情
用数学归纳法证明:12-22+32-42+…+(-1)n-1n2=(-1)n-1
证明:(1)当n=1时,左边=1,右边=(-1)0=1,
故:左边=右边,
∴当n=1时,等式成立;
(2)假设n=k时,等式成立,即 12﹣22+32﹣42+…+(﹣1)k-1k2=(-1)k-1·
那么12﹣22+32﹣42+…+(﹣1)k﹣1k2+(﹣1)k(k+1)2
=(﹣1)k-1·+(﹣1)k(k+1)2
=(﹣1)k·(﹣k+2k+2)=(﹣1)(k+1)﹣1·
即当n=k+1时,等式也成立.
根据(1)和(2)可知等式对任何n∈N+都成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}满足a1=
12
Sn=n2an(n≥1)

(1)求S1,S2,S3并猜想Sn
(2)用数学归纳法证明(1)中猜想的正确性.

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明不等式1+
1
2
+
1
3
+…+
1
2n-1
n
2
(n∈N*),第二步由k到k+1时不等式左边需增加(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•南通一模)用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=
n(n+1)(n+2)(n+3)4
(n∈N*)

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+…+
1
2n
,第一步应该验证左式是
1-
1
2
1-
1
2
,右式是
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明:1+3+5+…+(2n-1)=n2

查看答案和解析>>

同步练习册答案