精英家教网 > 高中数学 > 题目详情
如图,已知AB⊥平面ACD,DE⊥平面ACD,且AC=AD=DE=2AB=4,F为CD的中点,
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)若∠CAD=90°,求三棱锥F-BCE的体积。
(Ⅰ)证明:如图,取DE的中点M,连接AM,FM,
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,
又∵AB=FM=
∴四边形ABEM是平行四边形,
∴AM∥BE,
又∵AM平面BCE,BE平面BCE,
∴AM∥平面BCE,
∵CF=FD,DM=ME,
∴MF∥CE,
又∵MF平面BCE,CE平面BCE,
∴MF∥平面BCE,
又∵AM∩MF=M,
∴平面AHF∥平面BCE,
∵AF平面AMF,
∴AF∥平面BCE。
(Ⅱ)解:由(Ⅰ),知AF∥平面BCE,
∴VF-BCE=VA-BCE=VC-ABE
∵AB⊥平面ACD,
∴平面ABED⊥平面ACD,
∵∠CAD=90°,即AC⊥AD,
∴AC⊥平面ABED,
所以,AC是三棱锥C-ABE的高,
∵AB=2,AD=4,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•惠州模拟)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求平面BCE与平面ACD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点
(Ⅰ) 求证:平面BCE⊥平面CDE;
(Ⅱ) 求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄一模)如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求直线BF和平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD为等边三角形,AD=DE=2AB,F为CD的中点
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求二面角F-BE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥平面ACD,DE⊥平面ACD,且AC=AD=DE=2AB=4,F为CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ) 若∠CAD=90°,求三棱锥F-BCE的体积.

查看答案和解析>>

同步练习册答案