精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3ax2+2bx+c,且a+b+c=0,f(0)>0,f(1)>0,
(1)证明a>0.
(2)证明方程f(x)=0在区间(0,1)内有两个实数根.
(1)∵f(x)=3ax2+2bx+c,
∴f(0)>0即c>0;f(1)>0即3a+2b+c>0
∵a+b+c=0
-a-b>0
2a+b>0
,两式相加可得a>0;
(2)∵f(
1
2
)=
3
4
a+b+c=(a+b+c)-
1
4
a
∴结合a>0且a+b+c=0,得f(
1
2
)=-
1
4
a<0
又∵f(0)>0,f(1)>0,
∴f(0)f(
1
2
)<0且f(1)f(
1
2
)<0
由根的存在性定理,得
f(x)=0在区间(0,
1
2
)和(
1
2
,1)内分别有一个根
∴方程f(x)=0在区间(0,1)内有两个实数根.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案