精英家教网 > 高中数学 > 题目详情
18.已知抛物线C:y2=ax(a>0)的焦点为F,过焦点F和点P(0,1)的射线FP与抛物线相交于点M,与其准线相交于点N,若|FM|:|MN|=1:3,则a=$\sqrt{2}$.

分析 求得抛物线的抛物线的焦点坐标,由丨MF丨=丨MK丨,则丨KN丨:丨KM丨=2$\sqrt{2}$:1,根据直线的斜率公式,即可求得a的值.

解答 解:由抛物线抛物线C:y2=ax,焦点F($\frac{a}{4}$,0),设M在准线上的射影为K,
由抛物线的定义丨MF丨=丨MK丨,
由|FM|:|MN|=1:3,则|KM|:|MN|=1:3,
∴丨KN丨:丨KM丨=2$\sqrt{2}$:1,
则kFN=$\frac{0-1}{\frac{a}{4}-0}$=$\frac{-4}{a}$,kFN=-$\frac{丨KN丨}{丨KM丨}$=-2$\sqrt{2}$,
∴$\frac{-4}{a}$=-2$\sqrt{2}$,解得:a=$\sqrt{2}$,
∴a的值$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查抛物线的简单几何性质,抛物线的定义,考查直线的斜率公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年四川省高二上学期期中考数学试卷(解析版) 题型:填空题

不等式的解集为

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,与y=x相同的函数是(  )
A.$y=\sqrt{x^2}$B.y=lg10xC.$y=\frac{x^2}{x}$D.$y={(\sqrt{x-1})^2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知a,b为正实数,直线y=x-a与曲线y=ln(x+b)相切,则$\frac{2}{a}$+$\frac{3}{b}$的最小值为5+2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合$A=\left\{{x∈Z|\frac{1}{27}<{3^x}≤9}\right\},B=\left\{{x∈N|-2<x<3}\right\}$,则集合{z|z=xy,x∈A,y∈B}的元素个数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在矩形ABCD中,AD=2,AB=4,E,F分别为AB,AD的中点,现△ADE将沿DE折起,得四棱锥A-BCDE.

(1)求证:EF∥平面ABC;
(2)若平面ADE⊥平面BCDE,求四面体FACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2\sqrt{2}-\frac{{\sqrt{2}}}{2}t\\ y=\sqrt{2}+\frac{{\sqrt{2}}}{2}t\end{array}$(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4$\sqrt{2}$sinθ.
(Ⅰ)将C2的方程化为直角坐标方程;
(Ⅱ)设C1,C2交于A,B两点,点P的坐标为$(\sqrt{2},2\sqrt{2})$,求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数y=sin(x+φ)(0≤φ≤π)是R上的偶函数,则φ的值为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系 xOy中,圆C1:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求C1的极坐标方程;
(2)若直线$\left\{\begin{array}{l}{x=t}\\{y=t}\end{array}\right.$(t参数)与圆C1的交点为M,N,求△C1MN的面积(C1圆心).

查看答案和解析>>

同步练习册答案