精英家教网 > 高中数学 > 题目详情
设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2b4=a3,分别求出{an}及{bn}的前10项的和S10T10.

解:由{an}为等差数列,{bn}为等比数列,得

a2+a4=2a3,b2b4=b32.

由已知a2+a4=b3,b2b4=a3,得

b3=2a3,a3=b32.

b3=2b32.

又∵b3≠0,∴b3=.∴a3=.

a1=1,a3=,知{an}的公差为d=-.

S10=10a1+d=-.

b1=1,b3=,知{bn}的公比为q=q=-.

q=时,T10==(2+);

q=-时,T10==(2-).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设an为等差数列,bn为等比数列,且a1=0,若cn=an+bn,且c1=1,c2=1,c3=2.
(1)求an的公差d和bn的公比q;     (2)求数列cn的前10项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

5、设{an}为等差数列,公差d=-2,sn为其前n项和,若s10=s11,则a1=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}为等差数列,则下列数列中,成等差数列的个数为(  )
①{an2} ②{pan} ③{pan+q} ④{nan}(p、q为非零常数)

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75.
(Ⅰ)求数列{an}的通项公式;
(2)令bn=C an(注释:bn等于C的an次方),(其中C为常数,且C≠0,n∈N*),求证:数列{bn}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}为等差数列,a1>0,a6+a7>0,a6•a7<0则使Sn>0成立的最大的n为(  )

查看答案和解析>>

同步练习册答案