科目:高中数学 来源:2010年普通高等学校招生全国统一考试、理科数学(北京卷) 题型:047
已知集合Sn={X|X=(x1,x2,…,xn),x1∈{0,1},i=1,2,…,n}(n≥2)对于A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定义A与B的差为A-B=(|a1-b1|,|a2-b2|,…|an-bn|);A与B之间的距离为
(Ⅰ)证明:
A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);
(Ⅱ)证明:
A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数
(Ⅲ)设P
,P中有m(m≥2)个元素,记P中所有两元素间距离的平均值为
(P)
证明:
(P)≤![]()
查看答案和解析>>
科目:高中数学 来源:2011年河北省正定中学高二上学期期末考试数学试卷 题型:解答题
本小题满分12分)
已知关于x的二次函数f(x)=ax2-4bx+1.
(I)已知集合P={-1,1,2,3,4,5},Q={-2,-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(II)在区域内随机任取一点(a,b).求函数
y=f(x)在区间[1,+∞)上是增函数的概率.
查看答案和解析>>
科目:高中数学 来源:2011年河北省高二上学期期末考试数学试卷 题型:解答题
本小题满分12分)
已知关于x的二次函数f(x)=ax2-4bx+1.
(I)已知集合P={-1,1,2,3,4,5},Q={-2,-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(II)在区域内随机任取一点(a,b).求函数y=f(x)在区间[1,+∞)上是增函数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
已知关于x的二次函数f(x)=ax2-4bx+1.
(I)已知集合P={-1,1,2,3,4,5},Q={-2,-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;
(II)在区域内随机任取一点(a,b).求函数y=f(x)在区间[1,+∞)上是增函数的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com