精英家教网 > 高中数学 > 题目详情

求(lg2)2+lg2·lg50+lg25的值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例5:(1)lg(x-y)+lg(x+2y)=lg2+lgx+lgy求
x
y
的值
(2)
lgx+lgy
lgx
+
lgx+lgy
lgy
+
[lg(x-y)]2
lgx•lgy
=0,求x,y及log2(x•y).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简:
1+
1
2
lg9-lg240
1-
2
3
lg27+lg
36
5
+1

(2)已知:lg(x-1)+lg(x-2)=lg2,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=(a+1)x,h(x)=x2+lg|a+2|,f(x)=g(x)+h(x),其中a∈R且a≠-2.
(1)若f(x)为偶函数,求a的值;
(2)命题p:函数f(x)在区间[(a+1)2,+∞)上是增函数,命题q:函数g(x)是减函数,如果p或q为真,p且q为假,求a的取值范围.
(3)在(2)的条件下,比较f(2)与3-lg2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•珠海二模)数列{an}的前n项和记为Sn,且满足Sn=2an-1.
(1)求数列{an}的通项公式;
(2)求和S1
C
0
n
+S2
C
1
n
+S3
C
2
n
+…+Sn+1
C
n
n

(3)设有m项的数列{bn}是连续的正整数数列,并且满足:lg2+lg(1+
1
b1
)+lg(1+
1
b2
)+…+lg(1+
1
bm
)=lg(log2am)

问数列{bn}最多有几项?并求这些项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若(2.5)x=1000,(0.25)y=1000,求证:=

(2)若lg(xy)+lg(x+2y)=lg2+lgx+lgy,求的值;

(3)若26a=33b=62c,求证:+=.

查看答案和解析>>

同步练习册答案