精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
12
x2-x+lnx

(I)求函数f(x)图象上所有点处的切线的倾斜角范围;
(II)若F(x)=f(x)-ax,a∈R,讨论F(x)的单调性.
分析:(I)先求函数f(x)的导函数f′(x),再利用均值定理求导函数的值域即切线斜率的取值范围,最后由斜率定义及正切函数图象求得切线的倾斜角范围
(II))先求函数F(x)的导函数F′(x),再将求函数单调区间问题转化为解含参数的一元二次不等式问题,通过分类讨论即可解决问题
解答:解:(I)函数的定义域为(0,+∞),f′(x)=x+
1
x
-1≥2
1
x
-1=1  (当且仅当x=1时取等号)
∴函数f(x)图象上所有点处的切线的斜率k≥1
∴切线的倾斜角θ满足tanθ≥1,θ∈[0,π)
∴θ∈[
π
4
π
2

(II)F(x)=f(x)-ax=
1
2
x2-(a+1)x+lnx

∴F′(x)=x+
1
x
-(a+1)=
x2-(a+1)x+1
x
  (x>0)
令g(x)=x2-(a+1)x+1 (x>0)
△=(a+1)2-4=(a+3)(a-1)
∴当a<-3时,△>0,方程g(x)=0的两实根为x1=
a+1+
(a+1)2-4
2
<0,x2=
a+1-
(a+1)2-4
2
<0
∴x>0时,g′(x)>0,∴F′(x)>0,∴F(x)在(0,+∞)上单调递增
当a>1时,△>0,方程g(x)=0的两实根为x1=
a+1+
(a+1)2-4
2
>0,x2=
a+1-
(a+1)2-4
2
>0且x1>x2
∴F(x)在(0,
a+1-
(a+1)2-4
2
),(
a+1+
(a+1)2-4
2
,+∞)上单调递增,在(
a+1-
(a+1)2-4
2
a+1+
(a+1)2-4
2
)上单调递减.
当-3≤a≤1时,△≤0,g′(x)≥0,∴F(x)在(0,+∞)上单调递增
综上所述:a≤1时,F(x)在(0,+∞)上单调递增
当a>1时,F(x)在(0,
a+1-
(a+1)2-4
2
),(
a+1+
(a+1)2-4
2
,+∞)上单调递增,在(
a+1-
(a+1)2-4
2
a+1+
(a+1)2-4
2
)上单调递减.
点评:本题考查了导数的运算和导数的几何意义,利用导数求函数的单调区间的方法,分类讨论的思想方法,转化化归的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案