精英家教网 > 高中数学 > 题目详情

写出命题“若x2+7x-8=0,则x=-8或x=1”的逆命题、否命题、逆否命题,并分别判断它们的真假.

答案:
解析:

  逆命题:若x=-8或x=1,则x2+7x-8=0.逆命题为真.

  否命题:若x2+7x-8≠0,则x≠-8且x≠1.否命题为真.

  逆否命题:若x≠-8且x≠1,则x2+7x-8≠0.逆否命题为真.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:方程
x2
a+6
+
y2
a-7
=1
表示中心在原点,焦点在坐标轴上的双曲线,命题q:存在x∈R,则x2-4x+a<0.
(1)写出命题q的否定;
(2)若“p或非q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•洛阳二模)给出下列命题:
①设向量
e1
e2
满足|
e1
|=2,|
e2
|=1,
e1
e2
的夹角为
π
3
.若向量2t
e1
+7
e2
e1
+t
e2
的夹角为钝角,则实数t的取值范围是(-7,-
1
2
);
②已知一组正数x1,x2,x3,x4的方差为s2=
1
4
(x12+x22+x32+x42)-4,则x1+1,x2+1,x3+1,x4+1的平均数为1
③设a,b,c分别为△ABC的角A,B,C的对边,则方程x2+2ax+b2=o与x2+2cx-b2=0有公共根的充要条件是A=90°;
④若f(n)表示n2+1(n∈N)的各位上的数字之和,如112+1=122,1+2+2=5,所以f(n)=5,记f1(n)=f(n),f2(n)=f[f1(n)],…fk+1(n)=f[fk(n)],k∈N,则f20(5)=11.
上面命题中,假命题的序号是
 (写出所有假命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)观察下列各式:
1+0.1
2+0.1
1
2
0.2+
3
0.5+
3
0.2
0.5
2
+7
3
+7
2
3
72+π
101+π
72
101
…请你根据上述特点,提炼出一个一般性命题(写出已知,求证),并用分析法加以证明.
(2)命题p:已知a>0且a≠1,函数y=log2x单调递减,命题q:f(x)=x2-2ax+1(
1
2
,+∞)上为增函数,若“p∧q”为假,“p∨q”为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设命题p:方程
x2
a+6
+
y2
a-7
=1
表示中心在原点,焦点在坐标轴上的双曲线,命题q:存在x∈R,则x2-4x+a<0.
(1)写出命题q的否定;
(2)若“p或非q”为真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案