精英家教网 > 高中数学 > 题目详情

设函数f(x)=数学公式数学公式定义在R上,其中数学公式
(1)求函数y=f(x)的单调递增区间;
(2)将函数y=f(x)的图象向右平移数学公式单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,若g(x)<m+2在x∈[O,2π]上恒成立,求实数m的取值范围.

解:(1)∵
∴y=f(x)=2cos2x+sin2x=cos2x+sin2x+1=2sin(2x+
由-+2kπ≤2x++2kπ(k∈Z),可得-+kπ≤x≤+kπ(k∈Z),
∴函数y=f(x)的单调递增区间为[-+kπ,+kπ](k∈Z);
(2)将函数y=f(x)的图象向右平移单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数y=g(x)=2sin(x-
∵x∈[O,2π],∴x-∈[-]
∴sin(x-)∈[-]
∴2sin(x-)∈[-1,]
∵f(x)<m+2在x∈[O,2π]上恒成立,
∴-1<m+2,∴m>-3.
分析:(1)先利用向量的数量积公式,再利用辅助角公式化简函数,利用正弦函数的单调增区间,即可求得结论;
(2)先求函数y=g(x),再求函数的最小值,即可求得实数m的取值范围.
点评:本题考查向量的数量积运算,考查辅助角公式的运用,考查函数的单调性,考查函数的最值,正确确定函数解析式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
1x+b
(a,b∈Z),曲线y=f(x)在点(2,f(2)处的切线方程为y=3.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x三角形的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+
1x+b
(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.
(Ⅰ)求f(x)的解析式,并判断函数y=f(x)的图象是否为中心对称图形?若是,请求其对称中心;否则说明理由.
(II)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,并求出此定值.
(III) 将函数y=f(x)的图象向左平移一个单位后与抛物线y=ax2(a为非0常数)的图象有几个交点?(说明理由)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x
2x+
2
的图象上两点P1(x1,y1)、P2(x2,y2),若
OP
=
1
2
OP1
+
OP2
),且点P的横坐标为
1
2

(1)求证:P点的纵坐标为定值,并求出这个定值;
(2)求Sn=f(
1
n
)+f(
2
n
)+A+f(
n-1
n
)+f(
n
n

(3)记Tn为数列{
1
(Sn+
2
)(Sn+1+
2
)
}的前n项和,若Tn<a(Sn+1+
2
)对一切n∈N*都成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-
bx
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-
bx
,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若f(x)-t2+t<0对一切x∈(1,4)恒成立,求t的取值范围;
(Ⅲ)证明:曲线f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为一值,并求此定值.

查看答案和解析>>

同步练习册答案