精英家教网 > 高中数学 > 题目详情
△ABC的内角A、B、C的对边分别为a、b、c,已知:asinA+csinC-
2
asinC=bsinB
. 
(Ⅰ)B;
(Ⅱ)若A=75°,b=2,求△ABC的面积.
分析:(Ⅰ)利用正弦定理化简已知的等式,再利用余弦定理表示出cosB,将得出的关系式代入计算求出cosB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;
(Ⅱ)由A与B的度数求出C的度数,再由sinB,b及sinC的值,利用正弦定理求出c的长,利用三角形的面积公式即可求出三角形ABC的面积.
解答:解:(Ⅰ)由正弦定理化简已知等式得:a2+c2-
2
ac=b2
由余弦定理得:cosB=
a2+c2-b2
2ac
=
2
2

∵B为三角形的内角,
∴B=45°;
(Ⅱ)∵A=75°,B=45°,
∴C=60°,
由b=2及正弦定理有:
2
sin45°
=
c
sin60°
,得到c=
2sin60°
sin45°
=
6

∴S△ABC=
1
2
bcsinA=
1
2
×2×
6
×sin75°=
3+
3
2
点评:此题考查了正弦、余弦定理,三角形的面积公式,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=
14

(Ⅰ)求△ABC的周长;
(Ⅱ)求cos(A-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•唐山二模)△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积S=
3
4
(c2-a2-b2)

(Ⅰ)求C;
(Ⅱ)若a+b=2,且c=
3
,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝坻区一模)设函数f(x)=sinx+cos(x+
π
6
),x∈R
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)记△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=
3
2
,且a=
3
2
b
,求角C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的内角A、B、C的对边分别为a、b、c,三边长a、b、c成等比数列,且a2=c2+ac-bc,则
asinB
b
的值为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知△ABC的内角A、B、C所对的边分别是a、b、c,若3a2+2ab+3b2-3c2=0,则角C的大小是
π-arccos
1
3
π-arccos
1
3

查看答案和解析>>

同步练习册答案