精英家教网 > 高中数学 > 题目详情

19.如图,已知△ABC是边长为1的正三角形,M、N分别是边AB、AC上的

   点,线段MN经过△ABC的中心G.设∠MGA=α(≤α≤).

   (1)试将△AGM、△AGN的面积(分别记为S1与S2)表示为α的函数;

   (2)求y=的最大值与最小值.

解:

(1)因为G为边长为1的正三角形ABC的中心,

所以    AG=,∠MAG=.

由正弦定理

得GM=

则S1=GM·GA·sinα=(或=).

,得GN=

则S2=GN·GA·sin(π-α)=(或=).

(2)y=[sin2(α+)+ sin2(α-)]=72(3+cot2α).

因为≤α≤,所以当α=或α=时,y的最大值ymax=240;

当α=时,y的最小值ymin=216.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知△ABC是边长为1的正三角形,M、N分别是边AB、AC上的点,线段MN经过△ABC的中心G,设?MGA=a(
π
3
≤α≤
3

(1)试将△AGM、△AGN的面积(分别记为S1与S2)表示为a的函数.
(2)求y=
1
S12
+
1
S22
的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

20、如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点.
求证:(1)FD∥平面ABC;
(2)平面EAB⊥平面EDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,F是BE的中点,求证:
(1)FD∥平面ABC;  
(2)AF⊥平面EDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知△ABC是直角三角形,∠ACB=90°,M为AB的中点,PM⊥△ABC所在的平面,那么PA、PB、PC的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源:2012届福建省高二下学期期末考试数学(文) 题型:选择题

如图:已知△ABC是直角三角形,∠ACB=90°M为AB的中点,PM⊥△ABC所在的

平面,那么PA、PB、PC的大小关系是(    )

A.PA>PB>PC    B.PB>PA>PC    C.PC>PA>PB    D.PA=PB=PC

 

查看答案和解析>>

同步练习册答案