精英家教网 > 高中数学 > 题目详情

研究下列函数的单调性.

(1)f(x)=tanx-x;

(2)f(x)=2x3-3x2-12x+1;

(3)f(x)=,x∈[0,+∞).

答案:
解析:

  解:(1)(x)=(tanx)′-1=-1,

  令(x)≥0,即≥1,

  ∴x≠kπ+(k∈Z).

  ∴f(x)在区间(kπ-,kπ+)(k∈Z)内单调递增.

  (2)(x)=6x2-6x-12,

  令(x)≥0,即x2-x-2≥0,

  ∴x≤-1或x≥2;

  令(x)≤0,即x2-x-2≤0,

  ∴-1≤x≤2.

  ∴函数f(x)在(-∞,-1)上单调递增,在[2,+∞]上也单调递增,f(x)在[-1,2]上单调递减.

  (3)(x)=

  令(x)≥0,又∵x≥0,∴≥0.

  ∴0<x≤100,并且f(x)在x=0处连续.

  令(x)≤0,又∵x≥0,

  ∴≤0.∴x≥100.

  综上所述,函数f(x)在[0,100]上单调递增;在[100,+∞)上单调递减.

  解析:利用(x)>0求增区间,(x)<0求减区间,并且要注意应该与定义域取公共部分.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于两个定义域相同的函数f(x),g(x),若存在实数m、n使h(x)=mf(x)+ng(x),则称函数h(x)是由“基函数f(x),g(x)”生成的.
(1)若f(x)=x2+3x和个g(x)=3x+4生成一个偶函数h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1由函数f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范围;
(3)试利用“基函数f(x)=log4(4+1)、g(x)=x-1”生成一个函数h(x),使之满足下列件:①是偶函数;②有最小值1;求函数h(x)的解析式并进一步研究该函数的单调性(无需证明).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市八校区重点(新八校)数学试卷(解析版) 题型:解答题

对于两个定义域相同的函数f(x),g(x),若存在实数m、n使h(x)=mf(x)+ng(x),则称函数h(x)是由“基函数f(x),g(x)”生成的.
(1)若f(x)=x2+3x和个g(x)=3x+4生成一个偶函数h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1由函数f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范围;
(3)试利用“基函数f(x)=log4(4+1)、g(x)=x-1”生成一个函数h(x),使之满足下列件:①是偶函数;②有最小值1;求函数h(x)的解析式并进一步研究该函数的单调性(无需证明).

查看答案和解析>>

科目:高中数学 来源:2011年上海市八校区重点(新八校)高考数学二模试卷(文科)(解析版) 题型:解答题

对于两个定义域相同的函数f(x),g(x),若存在实数m、n使h(x)=mf(x)+ng(x),则称函数h(x)是由“基函数f(x),g(x)”生成的.
(1)若f(x)=x2+3x和个g(x)=3x+4生成一个偶函数h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1由函数f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范围;
(3)试利用“基函数f(x)=log4(4+1)、g(x)=x-1”生成一个函数h(x),使之满足下列件:①是偶函数;②有最小值1;求函数h(x)的解析式并进一步研究该函数的单调性(无需证明).

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市高三(下)SOEC数学试卷(理科)(解析版) 题型:解答题

对于两个定义域相同的函数f(x),g(x),若存在实数m、n使h(x)=mf(x)+ng(x),则称函数h(x)是由“基函数f(x),g(x)”生成的.
(1)若f(x)=x2+3x和个g(x)=3x+4生成一个偶函数h(x),求h(2)的值;
(2)若h(x)=2x2+3x-1由函数f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范围;
(3)试利用“基函数f(x)=log4(4+1)、g(x)=x-1”生成一个函数h(x),使之满足下列件:①是偶函数;②有最小值1;求函数h(x)的解析式并进一步研究该函数的单调性(无需证明).

查看答案和解析>>

同步练习册答案