精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax+19,且f(3)=7,若f(t)=15,则t=________.

1
分析:本题中解析式中有参数,知道了其图象上一点的坐标,故可以将点的坐标代入求出参数,即得到函数的解析式,
又由f(t)=15,建立关于t的方程求出t值即可.
解答:由f(x)=ax+19,且f(3)=7
得3a+19=7,解得a=-4
即f(x)=-4x+19
∵f(t)=15
∴-4t+19=15
∴t=1
故答案为:1
点评:本题考点是函数解析式的求解及常用方法,属于待定系数法求解析式那一类的题型,本题中解析式已经给出,将其图象上点的坐标代入求得参数即可得函数的解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案