精英家教网 > 高中数学 > 题目详情
已知向量
a
={2sinx,cosx}
b
={
3
cosx,2cosx}
定义函数f(x)=
a
b
-1

(1)求函数f(x)的最小正周期.
(2)x∈R时求函数f(x)的最大值及此时的x值.
f(x)=
a
b
-1=2
3
sinx×cosx+2cos2x-1
=
3
sin2x+cos2x=2sin(2x+
π
6
)       (7分)
(1)T=
| ω |
=π(9分)
(2)f(x)=2sin(2x+
π
6

∴当2x+
π
6
=
π
2
+2kπ(k∈Z)
即x=
π
6
+kπ(k∈Z)时,f(x)取最大值为2
∴当x=
π
6
+kπ(k∈Z)时f(x)max=2  (12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(2sinx,cosx),
b
=(
3
cosx,2cosx)
,定义函数f(x)=
a
b
-1

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调减区间;
(Ⅲ)在答卷的坐标系中画出函数g(x)=f(x),x∈[-
π
12
11π
12
]
的简图,并由图象写出g(x)的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•东城区一模)已知向量
a
=(2sinx,cosx),
b
=(
3
cosx,2cosx),定义函数f(x)=
a
b
-1

(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调减区间;
(3)画出函数g(x)=f(x),x∈[-
12
12
]
的图象,由图象研究并写出g(x)的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2sinx,cosx)
b
=(cosx,2cosx)

(1)求f(x)=
a
b
,并求f(x)的单调递增区间.
(2)若
c
=(2,1)
,且
a
-
b
c
共线,x为第二象限角,求(
a
+
b
)•
c
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2005•南汇区一模)已知向量
a
={2sinx,cosx}
b
={
3
cosx,2cosx}
定义函数f(x)=
a
b
-1

(1)求函数f(x)的最小正周期.
(2)x∈R时求函数f(x)的最大值及此时的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2sinx,sinx-cosx)
b
=(cosx,
3
(cosx+sinx))
,函数f(x)=
a
b
+1

(1)当x∈(
π
4
π
2
)
时,求f(x)的最大值和最小值;
(2)求f(x)的单调区间.

查看答案和解析>>

同步练习册答案