精英家教网 > 高中数学 > 题目详情
(2012•武昌区模拟)设△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC=
14
,E为边AB的中点.
(I)求△ABC的周长;
(II)求△ABC的内切圆的半径与△CAE的面积.
分析:(Ⅰ)利用余弦定理得到c2=a2+b2-2abcosC,将a,b及cosC的值代入,开方求出c的值,即可得到三角形的周长;
(Ⅱ)由cosC的值,及C为三角形的内角,利用同角三角函数间的基本关系求出sinC的值,设三角形ABC的内切圆半径为r,连接三角形内心与三个顶点,将三角形ABC分为三个高都为r的三角形,可得出三角形的面积等于周长乘以r的一半,表示出三角形的面积,再利用三角形的面积公式表示出三角形的面积,将三角形的周长,a,b及sinC的值代入求出r的值;由E为AB的中点,利用等底同高得到三角形CAE的面积为三角形ABC面积的一半,求出即可.
解答:(本小题满分12分)
解:(Ⅰ)∵a=1,b=2,cosC=
1
4

∴由余弦定理c2=a2+b2-2abcosC得:c2=1+4-1=4,
解得:c=2,
则△ABC的周长为1+2+2=5;…(6分)
(Ⅱ)∵cosC=
1
4
,且C为三角形的内角,
∴sinC=
15
4

设△ABC的内切圆半径为r,则有S△ABC=
1
2
absinC=
1
2
(a+b+c)r,
1
2
×1×2×
15
4
=
1
2
×5×r,
解得:r=
15
10

又E为AB的中点,
∴S△CAE=
1
2
S△ABC=
15
8
.…(12分)
点评:此题考查了余弦定理,三角形的面积公式,三角形内切圆性质,以及同角三角函数间的基本关系,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•武昌区模拟)已知数列{an},{bn}满足:a1=3,当n≥2时,an-1+an=4n;对于任意的正整数n,b1+2b2+…+2n-1bn=nan.设{bn}的前n项和为Sn
(Ⅰ)计算a2,a3,并求数列{an}的通项公式;
(Ⅱ)求满足13<Sn<14的n的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)在圆x2+y2=4上,与直线l:4x+3y-12=0的距离最小值是
2
5
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD,AB=
2
AD,E是线段PD上的点,F是线段AB上的点,且
PE
ED
=
BF
FA
=λ(λ>0)

(Ⅰ)当λ=1时,证明DF⊥平面PAC;
(Ⅱ)是否存在实数λ,使异面直线EF与CD所成的角为60°?若存在,试求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)设fk(x)=si
n
2k
 
x+co
s
2k
 
x(x∈R)
,利用三角变换,估计fk(x)在k=l,2,3时的取值情况,对k∈N*时推测fk(x)的取值范围是
1
2k-1
fk(x) ≤1
1
2k-1
fk(x) ≤1
(结果用k表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)2011年武汉电视台问政直播节日首场内容是“让交通更顺畅”.A、B、C、D四个管理部门的负责人接受问政,分别负责问政A、B、C、D四个管理部门的现场市民代表(每一名代表只参加一个部门的问政)人数的条形图如下.为了了解市民对武汉市实施“让交通更顺畅”几个月来的评价,对每位现场市民都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
满意 一般 不满意
A部门 50% 25% 25%
B部门 80% 0 20%
C部门 50% 50% 0
D部门 40% 20% 40%
(I)若市民甲选择的是A部门,求甲的调查问卷被选中的概率;
(11)若想从调查问卷被选中且填写不满意的市民中再选出2人进行电视访谈,求这两人中至少有一人选择的是D部门的概率.

查看答案和解析>>

同步练习册答案