精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn=n2+n.
(I)求数列{an}的通项公式;
(II)若bn=(
1
2
)an+n
,求数列{bn}的前n项和Tn
(I)当n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n,
当n=1时,a1=2也适合上式,
∴an=2n.
(II)由(I)知,bn=(
1
2
)an+n=(
1
4
)n+n

Tn=
1
4
+(
1
4
)2++(
1
4
)n+(1+2+…+n)=
1
4
[(1-(
1
4
)
n
)]
1-
1
4
+
n(n+1)
2

=
1
3
[1-(
1
4
)n]+
n(n+1)
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案