精英家教网 > 高中数学 > 题目详情

若(1+x)n=1+a1xa2x2a3x3+…+xn(nN*),且a1a3=1∶2,则n=________

练习册系列答案
相关习题

科目:高中数学 来源:中学教材全解 高中数学 必修1(人教A版) 人教A版 题型:022

(创新题)定义f(x,y)=(y2,2y-x),若f(m,n)=(1,2)T,则(m,n)=________.

查看答案和解析>>

科目:高中数学 来源:广东省潮州金山中学2010-2011学年高二下学期期中考试数学文科试卷 题型:044

若实数m,n为关于x的一元二次方程Ax2+Bx+C=0的两个实数根,则有Ax2+Bx+C=A(x-m)(x-n),由系数可得:m+n=-,且m·n=.设x1,x2,x3为关于x的方程f(x)=x3-ax2+bx-c=0,(a,b,c∈R)的三个实数根.

(1)写出三次方程的根与系数的关系;即x1+x2+x3=_________;x1x2+x2x3+x3x1=_________;x1·x2·x3=_________

(2)若a,b,c均大于零,试证明:x1,x2,x3都大于零

(3)若a∈Z,b∈Z,|b|<2,f(x)在x=α,x=β处取得极值,且-1<α<β<1,求方程f(x)=0三个实根两两不相等时,实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源:四川省成都树德中学2012届高考适应考试(一)数学试题文理科 题型:013

若(1+x)n=a0+a1x+a2x2+…+anxn(n∈N+)且a1+a2=21,则展开式的各项中系数的最大值为

[  ]

A.15

B.20

C.56

D.70

查看答案和解析>>

科目:高中数学 来源:2014届广东省高一期中考试文科数学试卷A卷(解析版) 题型:解答题

已知函数f(x)(x∈R)满足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的实数x只有一个.

(1)求函数f(x)的表达式;

(2)若数列{an}满足a1,an+1=f(an),bn-1,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式;

(3)在(2)的条件下,证明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴

∴{bn}为等比数列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)证明:∵anbn=an=1-an=1-

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

同步练习册答案