精英家教网 > 高中数学 > 题目详情

过P(0,1)作直线l与l1:x-3y+10=0交于点A,与l2:2x+y-8=0交与点B,若,求l的方程.

 

思路分析:解析几何问题的主要思维策略是通过“方程”“坐标”两个途径完成问题的解答,根据命题的特点,正确设立l的方程或A、B的坐标可得到下面两种解法.

解:设l的方程为y=kx+1,联立A(),

联立*B().

=0,k=-,得l的方程为3x+5y-5=0.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两点M和N分别在直线y=mx和y=-mx(m>0)上运动,且|MN|=2,动点p满足:2
OP
=
OM
+
ON
(O为坐标原点),点P的轨迹记为曲线C.
(I)求曲线C的方程,并讨论曲线C的类型;
(Ⅱ)过点(0,1)作直线l与曲线C交于不同的两点A、B,若对于任意m>1,都有∠AOB为锐角,求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知半径为2的圆的圆心C在x轴上,圆心C的横坐标是非负整数,且与直线4x+3y+10=0相切.
(Ⅰ)求圆C的方程;
(Ⅱ)设直线l:y=kx+1与圆相交于P、Q两点,若
OP
OQ
=-2,求k的值;
(Ⅲ)已知直线l:y=kx+1,过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PQMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(-2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.
(I)求圆C的方程;
(II)若
OP
OQ
=-2
,求实数k的值;
(III)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的方程为x2+y2=4,直线l:y=kx+1与圆C相交于P、Q两点.过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,则四边形PMQN面积的大值(  )

查看答案和解析>>

同步练习册答案