精英家教网 > 高中数学 > 题目详情
21、(文)f(x)=(2x+1)10,则f'(x)的展开式中的一次项系数为
360
分析:先利用导数的运算法则求出f′(x),再利用二项展开式的通项公式求出展开式中的一次项系数
解答:解:f'(x)=20(2x+1)9
一次项系数为40C98
所以f'(x)的展开式中的一次项系数为360.
故答案为360
点评:本题考查导数的运算法则、利用二项展开式的通项公式求展开式的特定项.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(文)已知函数f(x)=x3+ax2+bx+2与直线4x-y+5=0切于点P(-1,1).
(Ⅰ)求实数a,b的值;
(Ⅱ)若x>0时,不等式f(x)≥mx2-2x+2恒成立,求实数m的取值范围.

(理) 已知正四棱柱ABCD-A1B1C1D1底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交线段B1C于点F.以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立空间直角坐标系D-xyz,如图.
(Ⅰ)求证:A1C⊥平面BED;
(Ⅱ)求A1B与平面BDE所成角的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知函数f(x)=x2(x-a).
(1)若f(x)在(2,3)上单调,求实数a的取值范围;
(2)若f(x)在(2,3)上不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)函数f(x)=log2(2-ax)在[0,1]上是减函数,则实数a的取值范围是
0<a<2
0<a<2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+4x-2,若对任意x1,x2∈R且x1≠x2,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2

(Ⅰ)求实数a的取值范围;
(Ⅱ)(理)对于给定的非零实数a,求最小的负数M(a),使得x∈[M(a),0]时,-4≤f(x)≤4都成立;
(Ⅲ)(理)在(Ⅱ)的条件下,当a为何值时,M(a)最小,并求出M(a)的最小值.
(Ⅱ)(文)求最小的实数b,使得x∈[b,1]时,f(x)≥-2都成立;
(Ⅲ)(文)若存在实数a,使得x∈[b,1]时,-2≤f(x)≤3b都成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,若关于x的方程f(x)=kx+k+1在[-1,3]内恰有四个不同的根,则实数k的取值范围是
(-
1
3
,0)
(-
1
3
,0)

查看答案和解析>>

同步练习册答案