精英家教网 > 高中数学 > 题目详情
已知:三棱锥P-ABC,平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E为垂足.
(1)求证:PA⊥平面ABC;
(2)当E为△PBC的垂心时,求证:△ABC是直角三角形.
分析:(1)在平面ABC内取一点D,作DF⊥AC于F,DG⊥AB于G,证明DF⊥PA,DG⊥PA,利用线面垂直的判定,可得PA⊥平面ABC;
(2)连结BE并延长交PC于H,证明PC⊥平面ABE,AB⊥平面PAC,即可证得结论.
解答:精英家教网证明:(1)如图所示,在平面ABC内取一点D,作DF⊥AC于F.
∵平面PAC⊥平面ABC,且交线为AC,∴DF⊥平面PAC.
又PA?平面PAC,∴DF⊥PA.
作DG⊥AB于G,同理可证:DG⊥PA.
∵DG、DF都在平面ABC内且DG∩DF=D,
∴PA⊥平面ABC;
(2)连结BE并延长交PC于H,
∵E是△PBC的垂心,∴PC⊥BH.
又已知AE是平面PBC的垂线,PC?平面PBC,
∴PC⊥AE.
又BH∩AE=E,∴PC⊥平面ABE.
又AB?平面ABE,∴PC⊥AB.
∵PA⊥平面ABC,∴PA⊥AB.
又PC∩PA=P,∴AB⊥平面PAC,
又AC?平面PAC,∴AB⊥AC,
即△ABC是直角三角形.
点评:本题考查线面垂直的判定,考查面面垂直的性质,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC的侧棱长为2,底面边长为1,平行四边形EFGH的四个顶点分别在棱AB、BC、CP、PA上,则
1
EF
+
1
FG
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正三棱锥P-ABC主视图如图所示,其中△PAB中,AB=PC=2cm,则这个正三棱锥的左视图的面积为
 
cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC的底面边长为6,侧棱长为
13
.有一动点M在侧面PAB内,它到顶点P的距离与到底面ABC的距离比为2
2
:1

精英家教网
(1)求动点M到顶点P 的距离与它到边AB的距离之比;
(2)在侧面PAB所在平面内建立为如图所示的直角坐标系,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(13分)已知,三棱锥P-ABC中,侧棱PC与底面成600的角,ABACBPACAB=4,AC=3.

(1) 求证:截面ABP⊥底面ABC;(2)求三棱锥P-ABC的体积的最小值,及此时二面角A-PC-B的正切值.

查看答案和解析>>

科目:高中数学 来源:2010年江苏省苏州市高考数学信息试卷(解析版) 题型:解答题

已知正三棱锥P-ABC主视图如图所示,其中△PAB中,AB=PC=2cm,则这个正三棱锥的左视图的面积为    cm2

查看答案和解析>>

同步练习册答案