精英家教网 > 高中数学 > 题目详情

函数f定义在正整数集上,且满足f(1)=2003,f(1)+f(2)+…+f(n)=n2f(n),(n>1),则f(2003)的值是______.

解:由题f(1)+f(2)+…+f(n)=n2f(n),f
∴(1)+f(2)+…+f(n-1)=(n-1)2f(n-1).
∴f(n)=n2f(n)-(n-1)2f(n-1)
∴f(n)=f(1)
∴f(2003)=
故答案为
分析:利用迭代法,把f(n)用f(1)和含n的式子表示,即可求出f(2003).
点评:本题主要考查了迭代法求数列的和,属于数列求和的常规题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点(n,an)(n∈N*)在函数f(x)=-6x-2的图象上,数列{an}的前n项和为Sn
(Ⅰ)求Sn
(Ⅱ)设cn=an+8n+3,数列{dn}满足d1=c1dn+1=cdn(n∈N*).求数列{dn}的通项公式;
(Ⅲ)设g(x)是定义在正整数集上的函数,对于任意的正整数x1、x2,恒有g(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a为常数,且a≠0),记bn=
g(
dn+1
2
)
dn+1
,试判断数列{bn}是否为等差数列,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f定义在正整数集上,且满足f(1)=2003,f(1)+f(2)+…+f(n)=n2f(n),(n>1),则f(2003)的值是
1
1002
1
1002

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f定义在正整数集上,且满足f(1)=2003,f(1)+f(2)+…+f(n)=n2f(n),(n>1),则f(2003)的值是______.

查看答案和解析>>

科目:高中数学 来源:2003-2004学年江苏省常州高级中学高一(下)数学竞赛试卷(解析版) 题型:填空题

函数f定义在正整数集上,且满足f(1)=2003,f(1)+f(2)+…+f(n)=n2f(n),(n>1),则f(2003)的值是   

查看答案和解析>>

同步练习册答案