精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin(ωx+φ)(ω>0,-
π
2
φ<
π
2
)的图象如图所示,直线x=
8
,x=
8
是其两条对称轴.
(1)求函数f(x)的解析式;
(2)若f(a)=
6
5
,且
π
8
<α<
8
,求f(
π
8
)的值.
精英家教网
(本题满分14分)
(1)由题意,
T
2
=
8
-
8
=
π
2
,∴T=π.
又ω>0,故ω=2,∴f(x)=2sin(2x+φ).(2分)
由f(
8
)=2sin(
4
+φ)=2,解得φ=2kπ-
π
4
(k∈Z).
又-
π
2
<φ<
π
2
,∴φ=-
π
4
,∴f(x)=2sin(2x-
π
4
).(5分)
由2kπ-
π
2
≤2x-
π
4
≤2kπ+
π
2
(k∈Z),知kπ-
π
8
≤x≤kπ+
8
(k∈Z),
∴函数f(x)的单调增区间为[kπ-
π
8
,kπ+
8
](k∈Z).(7分)
(2)解法1:依题意得2sin(2α-
π
4
)=
6
5
,即sin(2α-
π
4
)=
3
5
,(8分)
π
8
<α<
8
,∴0<2α-
π
4
π
2

∴cos(2α-
π
4
)=
4
5
,(10分)
f(
π
8
+α)=2sin[(2α-
π
4
)+
π
4
].
∵sin[(2α-
π
4
)+
π
4
]=sin(2α-
π
4
)cos
π
4
+cos(2α-
π
4
)sin
π
4
=
2
2
3
5
+
4
5
)=
7
2
10

∴f(
π
8
+α)=
7
2
5
.(14分)
解法2:依题意得sin(2α-
π
4
)=
3
5
,得sin2α-cos2α=
3
2
5
,①(9分)
π
8
<α<
8
,∴0<2α-
π
4
π
2

∴cos(α-
π
4
)=
4
5
,(11分)
由cos(2α-
π
4
)=
4
5
得sin2α+cos2α=
4
2
5
.②
①+②得2sin2α=
7
2
5

∴f(
π
8
+α)=
7
2
5
.(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案