精英家教网 > 高中数学 > 题目详情
已知f(x)=ax3+bx2+cx,若函数在区间(-∞,-
5
3
),(1,+∞)上是增函数,在区间[-
5
3
,1]上是减函数,又f′(0)=-5,求f(x)的解析式.
f′(x)=3ax2+2bx+c,
由已知可得f′(-
5
3
)=f(1)=0,f′(0)=-5,
3a(-
5
3
)
2
+2b(-
5
3
)+c =0

3a12+2b1+c=0;
3a(-5)2+2b(-5)+c=-5.
解得a=-
1
10
,b=
3
20
,c=0.
f(x)=-
1
10
x3+
3
20
x2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx+2,且f(-5)=3,则f(5)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3-bx+1且f(-4)=7,则f(4)=
-5
-5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bx+1,f(-2)=2,则f(2)=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax3+bsinx+6,a、b∈R,若f(3)=10,则f(-3)=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F(x)=ax3+bx5+cx3+dx-6,F(-2)=10,则F(2)的值为(  )
A、-22B、10C、-10D、22

查看答案和解析>>

同步练习册答案