精英家教网 > 高中数学 > 题目详情
设函数f(x)=2x-cos4x,{an}是公差为
π
8
的等差数列,f(a1)+f(a2)+…+f(a8)=11π,则[f(a2)]2-a1a5=(  )
分析:先设数列{an}的首项为a1,则根据条件可得,2(a1+a2+…+a8)=11π,利用等差数列的求和公式可求得首项a1从而得出a2,a5,最后即可求出[f(a2)]2-a1a5的值.
解答:解:设数列{an}的首项为a1,则根据f(a1)+f(a2)+…+f(a8)=11π,得
2a1-cos4a1+2a2-cos4a2+…+2a8-cos4a8=11π
∴2a1+2a2+…+2a8=11π,即2(8a1+
8×7
2
×
π
8
)=11π,
∴a1=
π
4

∴a2=
8
,a5=
π
4
+4×
π
8
=
4

[f(a2)]2-a1a5=[2×
8
-cos(4×
8
)]2-
π
4
×
4
=
3
8
π2

故选C.
点评:利用方程思想解决等差数列的问题,正确的列方程或列方程组是解决问题的关键,方程思想是高中数学比较重要的四大思想之一.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2、设函数f(x)=2x+3,g(x)=3x-5,则f(g(1))=
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

给定实数a(a≠
12
),设函数f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的导数f′(x)的图象为C1,C1关于直线y=x对称的图象记为C2
(Ⅰ)求函数y=f′(x)的单调区间;
(Ⅱ)对于所有整数a(a≠-2),C1与C2是否存在纵坐标和横坐标都是整数的公共点?若存在,请求出公共点的坐标;若不若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
(2x+1)(3x+a)
x
为奇函数,则a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x+x-4,则方程f(x)=0一定存在根的区间为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-2x+m2x+n
(m、n为常数,且m∈R+,n∈R).
(Ⅰ)当m=2,n=2时,证明函数f(x)不是奇函数;
(Ⅱ)若f(x)是奇函数,求出m、n的值,并判断此时函数f(x)的单调性.

查看答案和解析>>

同步练习册答案