精英家教网 > 高中数学 > 题目详情
(2011•安徽模拟)已知数列{an}的前n项和为Tn=
3
2
n2-
1
2
n,且an+2+3log4bn=0(n∈N*
(I)求{bn}的通项公式;
(II)数列{cn}满足cn=an•bn,求数列{cn}的前n项和Sn
(III)若cn
1
4
m2+m-1对一切正整数n恒成立,求实数m的取值范围.
分析:(I)由Tn=
3
2
n2-
1
2
n,先求数列{an}的通项公式;代入到an+2+3log4bn=0(n∈N*)根据对数的运算性质化简即可求出{bn}的通项公式;
(II)把第一问求出的两数列的通项公式代入cn=an•bn中,确定出cn的通项公式,从而求数列{cn}的前n项和Sn
(III)表示出cn+1-cn,判断得到其差小于0,故数列{cn}为递减数列,令n=1求出数列{cn}的最大值,然后原不等式的右边大于等于求出的最大值,列出关于m的一元二次不等式,求出不等式的解集即为实数m的取值范围.
解答:解:(I)由Tn=
3
2
n2-
1
2
n,易得an=3n-2代入到an+2+3log4bn=0(n∈N*)根据对数的运算性质化简bn=(
1
4
)
n
(n∈N*),
(II)cn=an•bn=(3n-2)×(
1
4
)
n
,∴Sn=1×
1
4
+4×(
1
4
)
2
++(3n-2)×(
1
4
)
n
1
4
S
n
=1×(
1
4
)
2
+4×(
1
4
)
3
++(3n-2)×(
1
4
)
n+1

两式相减整理得Sn=
2
3
-
3n+2
3
×(
1
4
)
n

(III)cn=an•bn=(3n-2)•(
1
4
)
n
∴cn+1-cn=(3n+1)•(
1
4
)
n+1
-(3n-2)•(
1
4
)
n
=9(1-n)•(
1
4
)
n+1
(n∈N*),
∴当n=1时,c2=c1=
1
4

当n≥2时,cn+1<cn,即c1=c2>c3>…>cn
∴当n=1时,cn取最大值是
1
4
,又cn
1
4
m2+m-1对一切正整数n恒成立∴
1
4
m2+m-1≥
1
4
,即m2+4m-5≥0,
解得:m≥1或m≤-5.
点评:此题考查了等比数列的通项公式,对数的运算性质及数列与不等式的综合.要求学生熟练掌握对数的运算性质,以及不等式恒成立时满足的条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•安徽模拟)已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点.
(1)求b的值;
(2)求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)设函数f(x)=sin(x+
π
6
)+2sin2
x
2
,x∈[0,π]

(Ⅰ)求f(x)的值域;
(Ⅱ)记△ABC的内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=
3
,求a
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)已知f(x)是奇函数,当x≥0时,f(x)=ex-1(其中e为自然对数的底数),则f(ln
1
2
)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)中,F为右焦点,A为左顶点,点B(0,b)且AB⊥BF,则此双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)已知函数f(x)=sinx-
x2
的导数为f'(x),且f'(x)的最大值为b,若g(x)=2lnx-2bx2-kx在[1,+∞)上单调递减,则实数k的取值范围是
[0,+∞)
[0,+∞)

查看答案和解析>>

同步练习册答案