精英家教网 > 高中数学 > 题目详情

已知椭圆=1(0<b<2)的左、右焦点分别为F1和F2,以F1、F2为直径的圆经过点M(0,b).

(1)求椭圆的方程;

(2)设直线l与椭圆相交于A,B两点,且·=0求证:直线l在y轴上的截距为定值.

答案:
解析:

  (1)由题设知,又,所以,故椭圆方程为;4分

  (2)因为,所以直线与x轴不垂直.设直线的方程为.由

  所以

  又·=0,所以

  即

  

  整理得

  即

  因为,所以

  展开整理得,即.直线l在y轴上的截距为定值.14分


练习册系列答案
相关习题

科目:高中数学 来源:湖北省黄冈市2009届高三3月质量检测 数学试题(理科) 题型:013

已知椭圆=1(a>b>0)的短轴端点分别为B1、B2,左、右焦点分别为F1、F2,长轴右端点为A,若,则椭圆的离心率为

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省高三3月月考数学试卷(解析版) 题型:解答题

如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.

(1)求椭圆和双曲线的标准方程;

(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;

(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆=1(ab>0)过点(1,),离心率为,左、右焦点分别为F1F2.点P为直线lxy=2上且不在x轴上的任意一点,直线PF1PF2与椭圆的交点分别为ABCDO为坐标原点.

(1)求椭圆的标准方程.

(2)设直线PF1PF2的斜率分别为k1k2.

(ⅰ)证明:=2.

(ⅱ)问直线l上是否存在点P,使得直线OAOBOCOD的斜率kOAkOBkOCkOD满足kOAkOBkOCkOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆=1(ab>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1PF2与椭圆的交点分别为ABCD.

(1)求椭圆和双曲线的标准方程;

(2)设直线PF1PF2的斜率分别为k1k2,证明:k1·k2=1;

(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案