精英家教网 > 高中数学 > 题目详情
20.函数y=-(x-5)|x|的递减区间是(-∞,0)和($\frac{5}{2}$,+∞).

分析 去掉绝对值,化为分段函数,画出函数图象,观察图象,得出结论

解答 解:∵函数y=-(x-5)|x|=$\left\{\begin{array}{l}{-{x}^{2}+5x,x≥0}\\{{x}^{2}-5x,x<0}\end{array}\right.$
画出函数图象,如图;
观察图象,当x<0和x>$\frac{5}{2}$时,都有y随的x增大而减小,
∴f(x)的递减区间是(-∞,0)和($\frac{5}{2}$,+∞);
故答案为:(-∞,0)和($\frac{5}{2}$,+∞).

点评 本题考查了含有绝对值的函数的单调性问题,解题时应去掉绝对值,化为分段函数,从而得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性做试验,并由回归分析法分别求得相关指数R与残差平方和m如下表:
R0.850.780.690.82
m103106124115
则哪位同学的试验结果体现A,B两变量更强的线性相关性(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知由不等式组$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y-kx≤2}\\{y-x-4≤0}\end{array}\right.$确定的平面区域M的面积为7,定点A的坐标为(1,-2),若B∈M,O为坐标原点,则$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值是(  )
A.-4B.-6C.-7D.-8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$f(x)=\left\{\begin{array}{l}1+x,x∈R\\(1+i)x,x∉R\end{array}\right.$,则f(f(1-i))=(  )
A.2-iB.1C.3D.3+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=x(2015+lnx),若f″(x0)=2016,则x0=$\frac{1}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{m}$=(a,1),$\overrightarrow{n}$=(1+sinx,acosx+b),函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$.
(1)当a=1时,求f(x)的单调递增区间;
(2)当a<0时,x∈[0,π]时,f(x)的值域是[3,4],求a,b的值;
(3)当a=-b=$\sqrt{2}$时,函数y=f(x)的图象与直线y=1有交点,求相邻两个交点的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若数列{an}的前n项和为Sn,且满足Sn+2=3an(n∈N*),则an=(  )
A.2n-1B.nC.($\frac{3}{2}$)n-1D.2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax3+bx2+(b-a)x(b≠2a且ab≠0).
(1)证明:函数f(x)的导函数f′(x)在区间(-1,-$\frac{1}{3}$)内有唯一零点;
(2)根据a,b的不同取值情况,讨论函数f(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=ax-1+3(a>0,且a≠1)的图象过一个定点P,且点P在直线mx+ny-1=0(m>0,n>0)上,则$\frac{1}{m}$+$\frac{4}{n}$的最小值是(  )
A.12B.13C.24D.25

查看答案和解析>>

同步练习册答案