精英家教网 > 高中数学 > 题目详情
9.已知数列{an}中,a1=1,an+1=2an-1,则a2=(  )
A.1B.2C.3D.4

分析 利用an+1=2an-1,得到a2=2a1-1,由此能示出结果.

解答 解:∵数列{an}中,a1=1,an+1=2an-1,
a2=2a1-1=2×1-1=1.
故选:A.

点评 本题考查数列的第二项的求法,考查运算求解能力、数据处理能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设O为△ABC的外心,若$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{OM}$,则M是△ABC的(  )
A.重心(三条中线交点)B.内心(三条角平分线交点)
C.垂心(三条高线交点)D.外心(三边中垂线交点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax2+bx和g(x)=lnx.
(Ⅰ) 若a=b=1,求证:f(x)的图象在g(x)图象的上方;
(Ⅱ) 若f(x)和g(x)的图象有公共点P,且在点P处的切线相同,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=a{x^3}-\frac{3}{2}{x^2}+1(a>0)$在区间[-$\frac{1}{2}$,$\frac{1}{2}$]上有f(x)>0恒成立,则a的取值范围为(  )
A.(0,2]B.[2,+∞)C.(0,5)D.(2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数$f(x)=sinx-\sqrt{3}cosx(x∈[-π,0])$的单调递增区间是(  )
A.$[-π,-\frac{5π}{6}]$B.$[-\frac{5π}{6},-\frac{π}{6}]$C.$[-\frac{π}{6},0]$D.$[-\frac{π}{3},0]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,若a=4,b=5,c=6,则cosA=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}的前n项和为Sn,若Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n(n≥1),则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和等于(  )
A.$\frac{n}{n+1}$B.$\frac{n-1}{n}$C.$\frac{1}{n}$D.$\frac{1}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.用集合表示求解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.直线x+y=0被圆x2+y2=1截得的弦长为(  )
A.$\sqrt{3}$B.1C.4D.2

查看答案和解析>>

同步练习册答案