精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
ax+1
x+2

(1)若a=1,判断函数f(x)在(-2,+∞)上的单调性并用定义证明;
(2)若函数f(x)=
ax+1
x+2
在(-2,+∞)上是增函数,求实数a的取值范围.
分析:(1)a=1,解析式明确,直接根据定义判断并证明单调性即可.
(2)受第一问的启发,可由单调性知道f(x1)-f(x2)的符号,从而列出关于a的不等式.
解答:解:(1)当a=1时,f(x)=
x+1
x+2
,函数f(x)在(-2,+∞)上单调递增.
下面证明:
设-2<x1<x2
f(x1)-f(x2)=
x1+1
x1+2
-
x2+1
x2+2
=
x1-x2
(x1+2)(x2+2)

∵-2<x1<x2
∴x1-x2<0,x1+2>0,x2+2>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2
所以函数f(x)在(-2,+∞)上单调递增.
(2)设-2<x1<x2
因为函数f(x)在(-2,+∞)上单调递增,
所以有f(x1)-f(x2)=
ax1+1
x1+2
-
ax2+1
x2+2
=
(2a-1)(x1-x2)
(x1+2)(x2+2)
<0,
∵-2<x1<x2
∴x1-x2<0,x1+2>0,x2+2>0,
所以2a-1>0,即a>
1
2

所以实数a的取值范围是(
1
2
,+∞)
点评:本题主要考察函数单调性的定义,主要是第二问关于a的不等式的获得.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案