精英家教网 > 高中数学 > 题目详情

过定点(12)作两直线与圆相切,则k的取值范围是

[  ]

Ak2

B.-3k2

Ck<-3k2

D.以上皆不对

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,点M(0,2)是椭圆的一个顶点,△F1MF2是等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,证明:直线AB过定点(-
1
2
,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区模拟)已知顶点在坐标原点,焦点在x轴正半轴的抛物线上有一点A(
12
,m)
,A点到抛物线焦点的距离为1.
(1)求该抛物线的方程;
(2)设M(x0,y0)为抛物线上的一个定点,过M作抛物线的两条互相垂直的弦MP,MQ,求证:PQ恒过定点(x0+2,-y0).
(3)直线x+my+1=0与抛物线交于E,F两点,在抛物线上是否存在点N,使得△NEF为以EF为斜边的直角三角形.

查看答案和解析>>

科目:高中数学 来源:数学教研室 题型:013

过定点(1,2)作两直线与圆相切,则k的取值范围是

[  ]

A.k>2
B.-3<k<2
C.k<-3或k>2
D.以上皆不对

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西赣州四所重点中学高三上学期期末联考文数学试卷(解析版) 题型:解答题

已知椭圆C:的离心率与等轴双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆C的短半轴长为半径的圆相切。

(Ⅰ)求椭圆C的方程;

(Ⅱ)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点(―1,―1)

 

查看答案和解析>>

同步练习册答案