精英家教网 > 高中数学 > 题目详情
28、已知数列{an}、{bn}满足:a1=1,a2=a(a为实数),且bn=an.an+1,其中n=1,2,3,…
(1)求证:“若数列{an}是等比数列,则数列{bn}也是等比数列”是真命题;
(2)写出(1)中命题的逆命题;判断它是真命题还是假命题,并说明理由.
(I)因an是等比数列,
a1=1,a2=a
∴an=an-1
∵bn=an.an+1
bn+1
bn
=
an+1an+2
anan+1

=
an+2
an
=a2

∴bn是以a为首项,a2为公比的等比数列.
(II)(I)中命题的逆命题是:若bn是等比数列,则an也是等比数列,是假命题.
设bn的公比为q则
bn+1
bn
=
an+1an+2
anan+1
=
an+2
an
=q,(q≠0)

又a1=1,a2=a
∴a1,a3,…a2n-1是以1为首项,q为公比的等比数列,
a2,a4…a2n…是以a为首项,q为公比的等比数列,
即an为1,a,q,aq,q2,aq2
但当q≠a2时,an不是等比数列,故逆命题是假命题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案